Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 395: 111013, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663798

RESUMO

Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Mucosa Intestinal , Nitrocompostos , Fator de Transcrição STAT3 , Tiazóis , Animais , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Nitrocompostos/farmacologia , Camundongos , Humanos , Células CACO-2 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Sulfato de Dextrana/toxicidade , Fator de Transcrição STAT3/metabolismo , Masculino , Janus Quinase 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-6/metabolismo , Modelos Animais de Doenças
2.
Free Radic Biol Med ; 214: 101-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360276

RESUMO

Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 µM) was toxic but at lower concentrations (1, 2.5, 5 µM) was beneficial to C. elegans. Sorafenib (1 µM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 µM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.


Assuntos
Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/genética , Sorafenibe/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento
3.
Br J Pharmacol ; 180(23): 3008-3023, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37428102

RESUMO

BACKGROUND AND PURPOSE: Nitazoxanide is a therapeutic anthelmintic drug. Our previous studies found that nitazoxanide and its metabolite tizoxanide activated adenosine 5'-monophosphate-activated protein kinase (AMPK) and inhibited signal transducer and activator of transcription 3 (STAT3) signals. As AMPK activation and/or STAT3 inhibition are targets for treating pulmonary fibrosis, we hypothesized that nitazoxanide would be effective in experimental pulmonary fibrosis. EXPERIMENTAL APPROACH: The mitochondrial oxygen consumption rate of cells was measured by using the high-resolution respirometry system Oxygraph-2K. The mitochondrial membrane potential of cells was evaluated by tetramethyl rhodamine methyl ester (TMRM) staining. The target protein levels were measured by using western blotting. The mice pulmonary fibrosis model was established through intratracheal instillation of bleomycin. The examination of the lung tissues changes were carried out using haematoxylin and eosin (H&E), and Masson staining. KEY RESULTS: Nitazoxanide and tizoxanide activated AMPK and inhibited STAT3 signalling in human lung fibroblast cells (MRC-5 cells). Nitazoxanide and tizoxanide inhibited transforming growth factor-ß1 (TGF-ß1)-induced proliferation and migration of MRC-5 cells, collagen-I and α-smooth muscle cell actin (α-SMA) expression, and collagen-I secretion from MRC-5 cells. Nitazoxanide and tizoxanide inhibited epithelial-mesenchymal transition (EMT) and inhibited TGF-ß1-induced Smad2/3 activation in mouse lung epithelial cells (MLE-12 cells). Oral administration of nitazoxanide reduced the bleomycin-induced mice pulmonary fibrosis and, in the established bleomycin-induced mice, pulmonary fibrosis. Delayed nitazoxanide treatment attenuated the fibrosis progression. CONCLUSIONS AND IMPLICATIONS: Nitazoxanide improves the bleomycin-induced pulmonary fibrosis in mice, suggesting a potential application of nitazoxanide for pulmonary fibrosis treatment in the clinic.


Assuntos
Anti-Helmínticos , Nitrocompostos , Fibrose Pulmonar , Tiazóis , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases Ativadas por AMP , Bleomicina , Colágeno Tipo I , Modelos Animais de Doenças , Anti-Helmínticos/efeitos adversos , Camundongos Endogâmicos C57BL
4.
Br J Pharmacol ; 180(14): 1862-1877, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36740831

RESUMO

BACKGROUND AND PURPOSE: Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear. EXPERIMENTAL APPROACH: The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM. KEY RESULTS: The specific Piezo1 channel activator Yoda1 or its analogue Dooku1 increased [Ca2+ ]i in human umbilical vein endothelial cells (HUVECs), and both Yoda1 and Dooku1 increased mitochondrial oxygen consumption rates (OCRs) and mitochondrial ATP production in HUVECs and primary cultured rat aortic endothelial cells (RAECs). Knockdown of Piezo1 inhibited Yoda1- and Dooku1-induced increases of mitochondrial OCRs and mitochondrial ATP production in HUVECs. The shear stress mimetics, Yoda1 and Dooku1, and the Piezo1 knock-down technique also demonstrated that Piezo1 activation increased glycolysis in HUVECs. Chelating extracellular Ca2+ with EGTA or chelating cytosolic Ca2+ with BAPTA-AM did not affect Yoda1- and Dooku1-induced increases of mitochondrial OCRs and ATP production, but chelating cytosolic Ca2+ inhibited Yoda1- and Dooku1-induced increase of glycolysis. Confocal microscopy showed that Piezo1 channels are present in mitochondria of endothelial cells, and Yoda1 and Dooku1 increased mitochondrial Ca2+ in endothelial cells. CONCLUSION AND IMPLICATIONS: Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells, suggesting a novel role of Piezo1 channel in endothelial ATP production.


Assuntos
Canais Iônicos , Mitocôndrias , Animais , Humanos , Ratos , Trifosfato de Adenosina , Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Respiração
5.
Eur J Pharmacol ; 912: 174614, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34736968

RESUMO

The heart is a high energy demand organ and enhancing mitochondrial function is proposed as the next-generation therapeutics for heart failure. Our previous study found that anthelmintic drug niclosamide enhanced mitochondrial respiration and increased adenosine triphosphate (ATP) production in cardiomyocytes, therefore, this study aimed to determine the effect of niclosamide on heart failure in mice and the potential molecular mechanisms. The heart failure model was induced by transverse aortic constriction (TAC) in mice. Oral administration of niclosamide improved TAC-induced cardiac hypertrophy, cardiac fibrosis, and cardiac dysfunction in mice. Oral administration of niclosamide reduced TAC-induced increase of serum IL-6 in heart failure mice. In vitro, niclosamide within 0.1 µM increased mitochondrial respiration and ATP production in mice heart tissues. At the concentrations more than 0.1 µM, niclosamide reduced the increased interleukin- 6 (IL-6) mRNA expression in lipopolysaccharide (LPS)-stimulated RAW264.7 and THP-1 derived macrophages. In cultured primary cardiomyocytes and cardiac fibroblasts, niclosamide (more than 0.1 µM) suppressed IL-6- and phenylephrine-induced cardiomyocyte hypertrophy, and inhibited collagen secretion from cardiac fibroblasts. In conclusion, niclosamide attenuates heart failure in mice and the underlying mechanisms include enhancing mitochondrial respiration of cardiomyocytes, inhibiting collagen secretion from cardiac fibroblasts, and reducing the elevated serum inflammatory mediator IL-6. The present study suggests that niclosamide might be therapeutic for heart failure.


Assuntos
Anti-Helmínticos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Niclosamida/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Anti-Helmínticos/uso terapêutico , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Enalapril/farmacologia , Enalapril/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Niclosamida/uso terapêutico , Fenilefrina/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Survivina/metabolismo
6.
Toxicol Appl Pharmacol ; 414: 115426, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524445

RESUMO

Activation of NLRP3 inflammasome is implicated in varieties of pathologies, the aim of the present study is to characterize the effect and mechanism of mitochondrial uncouplers on NLRP3 inflammasome activation by using three types of uncouplers, niclosamide, CCCP and BAM15. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increases of NLRP3 protein and IL-1ß mRNA levels in RAW264.7 macrophages and THP-1 derived macrophages. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increase of NFκB (P65) phosphorylation, and inhibited NFκB (P65) nuclear translocation in RAW264.7 macrophages. Niclosamide and BAM15 inhibited LPS-induced increase of IκBα phosphorylation in RAW264.7 macrophages, and the inhibitory effect was dependent on increased intracellular [Ca2+]i; however, CCCP showed no significant effect on IκBα phosphorylation in RAW264.7 macrophages stimulated with LPS. In conclusion, chemical mitochondrial uncouplers niclosamide, CCCP and BAM15 share common inhibitory effect on NLRP3 inflammasome activation through inhibiting NFκB nuclear translocation.


Assuntos
Inflamassomos/agonistas , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Desacopladores/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Diaminas/toxicidade , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Niclosamida/toxicidade , Oxidiazóis/toxicidade , Fosforilação , Pirazinas/toxicidade , Células RAW 264.7 , Células THP-1
7.
J Biomed Mater Res A ; 108(1): 30-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433913

RESUMO

Niclosamide is an antihelminthic drug. Recent studies show that niclosamide exerts antitumor activity through inhibiting multiple signals including Wnt/ß-catenin, mTORC1, signal transducer and activator of transcription 3, NF-κB, notch signals; however, the insolubility and poor bioavailability limits its potential clinic use, the aim of the present work is to synthesize an injectable pegylated niclosamide (polyethylene glycol-modified niclosamide) and investigate its antitumor activity in vitro and in vivo. The pegylated niclosamide (mPEG5000-Nic) was synthesized and the chemical structure was identified by Fourier transform infrared spectra and 1 H nuclear magnetic resonance spectra. The antitumor activity was evaluated in CT26 and HCT116 colon cancer cells in vitro and nude mouse xenograft model of CT26 cells in vivo. The water solubility of niclosamide in mPEG5000-Nic was significantly increased. Niclosamide could be released from mPEG5000-Nic nanoparticles in PBS solution. mPEG5000-Nic inhibited the cell viability of CT26 and HCT116 cells in vitro. No animal death was observed in mice with intraperitoneal injection of mPEG5000-Nic (equivalent to 1000 mg/kg niclosamide) within 24 hr, indicating that mPEG5000-Nic was less toxic. In nude mouse, xenograft model of CT26 colon carcinoma, intraperitoneal injection of mPEG5000-Nic (equivalent to niclosamide 50 mg/kg) inhibited tumor growth but had no effect on animal body weight and heart, liver, kidney, and lung weight in vivo. Meanwhile, in the same model, intraperitoneal injection of the positive clinic drug 5-fluorouracil not only inhibited the tumor growth, but also reduced the animal body weight. Our study demonstrates that pegylated niclosamide is novel niclosamide delivery system with clinical perspective for cancer therapy.


Assuntos
Injeções , Neoplasias/tratamento farmacológico , Niclosamida/uso terapêutico , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Injeções Intraperitoneais , Camundongos Endogâmicos BALB C , Camundongos Nus , Niclosamida/química , Niclosamida/farmacologia , Polietilenoglicóis/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Fator de Transcrição STAT3/metabolismo , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Acta Biomater ; 44: 323-31, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544813

RESUMO

UNLABELLED: Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. STATEMENT OF SIGNIFICANCE: Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy.


Assuntos
Compostos Azo/química , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Fumarato de Dimetilo/uso terapêutico , Sistemas de Liberação de Medicamentos , Micelas , Polímeros/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Br J Pharmacol ; 172(15): 3929-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953698

RESUMO

BACKGROUND AND PURPOSE: Dimethyl fumarate (DMF) is a newly approved drug for the treatment of relapsing forms of multiple sclerosis and relapsing-remitting multiple sclerosis. Here, we investigated the effects of DMF and its metabolites mono-methylfumarate (MMF and methanol) on different gastrointestinal cancer cell lines and the underlying molecular mechanisms involved. EXPERIMENTAL APPROACH: Cell viability was measured by the MTT or CCK8 assay. Protein expressions were measured by Western blot analysis. LDH release, live- and dead-cell staining, intracellular GSH levels, and mitochondrial membrane potential were examined by using commercial kits. KEY RESULTS: DMF but not MMF induced cell necroptosis, as demonstrated by the pharmacological tool necrostatin-1, transmission electron microscopy, LDH and HMGB1 release in CT26 cells. The DMF-induced decrease in cellular GSH levels as well as cell viability and increase in reactive oxygen species (ROS) were inhibited by co-treatment with GSH and N-acetylcysteine (NAC) in CT26 cells. DMF activated JNK, p38 and ERK MAPKs in CT26 cells and JNK, p38 and ERK inhibitors partially reversed the DMF-induced decrease in cell viability. GSH or NAC treatment inhibited DMF-induced JNK, p38, and ERK activation in CT26 cells. DMF but not MMF increased autophagy responses in SGC-7901, HCT116, HT29 and CT26 cancer cells, but autophagy inhibition did not prevent the DMF-induced decrease in cell viability. CONCLUSION AND IMPLICATIONS: DMF but not its metabolite MMF induced necroptosis in colon cancer cells through a mechanism involving the depletion of GSH, an increase in ROS and activation of MAPKs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Fumarato de Dimetilo/efeitos adversos , Glutationa/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Necrose/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Fumaratos/efeitos adversos , Proteína HMGB1/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Maleatos/efeitos adversos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metanol/efeitos adversos , Camundongos , Necrose/metabolismo
10.
J Biomed Mater Res A ; 101(1): 253-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22941780

RESUMO

Curcumin has multiple biological and pharmacological activities, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and antitumor activities. However, the clinical use of curcumin is limited because of its poor oral absorption and extremely poor bioavailability. In order to overcome these limitations, we conjugate curcumin chemically into the known biocompatible and biodegradable polymer, poly(glycerol-sebacate), and prepare the unitary poly(glycerol-sebacate-curcumin) polymer. The structure, the in vitro degradation, the drug release, and antitumor activity as well as the in vivo degradation and tissue biocompatibility of poly(glycerol-sebacate-curcumin) polymer are investigated. The in vitro degradation and drug release profile of poly(glycerol-sebacate-curcumin) are in a linear manner. The in vitro antitumor assay shows that poly(glycerol-sebacate-curcumin) polymer significantly inhibits human malignant glioma cells, U87 and T98 cells. In view of the cytotoxicity against brain gliomas, local use of this polymer would be a potential method for brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Curcumina/uso terapêutico , Decanoatos/uso terapêutico , Glioma/tratamento farmacológico , Glicerol/análogos & derivados , Polímeros/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacologia , Decanoatos/síntese química , Decanoatos/química , Decanoatos/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Géis , Glioma/patologia , Glicerol/síntese química , Glicerol/química , Glicerol/farmacologia , Glicerol/uso terapêutico , Humanos , Microscopia Eletrônica de Varredura , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Wistar , Espectrofotometria Infravermelho , Água/química , Difração de Raios X
11.
J Biomater Sci Polym Ed ; 23(6): 833-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21418749

RESUMO

Poly(glycerol-sebacate) (PGS) is an elastomeric biodegradable polyester that could be used as biodegradable drug carrier. We have previously prepared PGS implants doped with 5-fluorouracil (5-FU-PGSs) and found that 5-FU-PGSs exhibited an initial burst of 5-FU release during in vitro degradation. The synthesis temperature and time are two of the most important reaction conditions for polymer synthesis. Therefore, in order to establish a controllable drug-release manner, we prepared a series of 5-FU-PGS with 2% weight of 5-FU under synthesis conditions with different polycondensing temperature and time and characterized the infrared spectrum properties, in vitro degradation and drug release. Results showed that the polycondensing temperature determined the mechanical properties, degradation and drug release of 5-FU-PGSs. With the polycondensing temperature increasing, the elastic modulus and hardness of 5-FU-PGSs increased, and the mass loss and 5-FU release rate decreased. The polycondensing time had no significant influence on the mechanical property, degradation and drug release of 5-FU-PGSs. We suggest that the polycondensing temperature is the factor to control the drug-release manner.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Decanoatos/síntese química , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Glicerol/análogos & derivados , Polímeros/síntese química , Temperatura , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Decanoatos/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Módulo de Elasticidade , Glicerol/síntese química , Glicerol/química , Células HeLa , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Polímeros/química , Espectrofotometria Infravermelho , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
12.
Biomaterials ; 30(28): 5209-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19560817

RESUMO

Poly (glycerol-sebacate) (PGS) is an elastomeric biodegradable polymer which possesses the ideal properties of drug carriers. In the present study, we prepared a series of PGS implants (5-FU-PGSs) loaded with different weight percent of 5-fluorouracil (2, 5, 7.5 and 10%). We studied the infrared spectrum properties, in vitro degradation and drug release, in vivo degradation and tissue biocompatibility of 5-FU-PGSs, in order to provide detailed information for the application of PGS as biodegradable drug carrier in cancer therapy. Macroscopically, all 5-FU-PGS wafers in phosphate buffer solution (PBS) kept their geometries during the degradation period of 30 days. The in vitro degradation rates of 5-FU-PGSs were accelerated when higher concentration of 5-FU was doped. Scanning electron microscopy observation showed that the surfaces of 5-FU-PGSs with higher concentration of 5-FU had irregular pits. The cumulative drug release profiles of 5-FU-PGSs exhibited a biphasic release with an initial burst release in the first day. After 7 days, almost 100% cumulative release of 5-FU was found for all 5-FU-PGSs.The degradation rate of 5-FU-PGSs in vivo was much quicker than that in vitro. Hematoxylin and eosin staining showed that no remarkable inflammations were observed in the tissue surrounding 5-FU-PGS implants, suggesting 5-FU-PGSs had good biocompatibility and no tissue toxicity. In vitro anti-tumor activity assay suggested that 5-FU-PGSs exhibited anti-tumor activity through sustained-release drug mode. These results demonstrate that PGS is a candidate of biodegradable drug carriers.


Assuntos
Implantes Absorvíveis , Antimetabólitos Antineoplásicos/administração & dosagem , Decanoatos/metabolismo , Portadores de Fármacos/metabolismo , Fluoruracila/administração & dosagem , Glicerol/análogos & derivados , Polímeros/metabolismo , Adenocarcinoma/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Decanoatos/química , Portadores de Fármacos/química , Feminino , Fluoruracila/metabolismo , Fluoruracila/uso terapêutico , Glicerol/química , Glicerol/metabolismo , Humanos , Polímeros/química , Ratos , Ratos Wistar , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA