Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399375

RESUMO

Fluorescent graphitic carbon nitride (g-C3N4) doped with various heteroatoms, such as B, P, and S, named Bg-C3N4, Pg-C3N4, and Sg-C3N4, were synthesized with variable band-gap values as diagnostic materials. Furthermore, they were embedded within hyaluronic acid (HA) microgels as g-C3N4@HA microgel composites. The g-C3N4@HA microgels had a 0.5-20 µm size range that is suitable for intravenous administration. Bare g-C3N4 showed excellent fluorescence ability with 360 nm excitation wavelength and 410-460 emission wavelengths for possible cell imaging application of g-C3N4@HA microgel composites as diagnostic agents. The g-C3N4@HA-based microgels were non-hemolytic, and no clotting effects on blood cells or cell toxicity on fibroblasts were observed at 1000 µg/mL concentration. In addition, approximately 70% cell viability for SKMEL-30 melanoma cells was seen with Sg-C3N4 and its HA microgel composites. The prepared g-C3N4@HA and Sg-C3N4@HA microgels were used in cell imaging because of their excellent penetration capability for healthy fibroblasts. Furthermore, g-C3N4-based materials did not interact with malignant cells, but their HA microgel composites had significant penetration capability linked to the binding function of HA with the cancerous cells. Flow cytometry analysis revealed that g-C3N4 and g-C3N4@HA microgel composites did not interfere with the viability of healthy fibroblast cells and provided fluorescence imaging without any staining while significantly decreasing the viability of cancerous cells. Overall, heteroatom-doped g-C3N4@HA microgel composites, especially Sg-C3N4@HA microgels, can be safely used as multifunctional theragnostic agents for both diagnostic as well as target and treatment purposes in cancer therapy because of their fluorescent nature.

2.
ACS Appl Bio Mater ; 5(12): 5554-5566, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36399694

RESUMO

Hyaluronic acid/mannitol (HA/MN)-based particles were designed as mitomycin c (MMC) delivery vehicles through the crosslinking of 1:0, 3:1, 1:3, and 0:1 mole ratios of HA/MN to investigate their potential use in bladder cancer therapy. The HA/MN-MMC particles prepared by the microemulsion crosslinking method were of 0.5-10 µm size with a zeta potential value of -36.7 mV. The MMC carrier potential of the HA/MN-MMC particles was investigated by changing HA/MN ratios in the particle structure. The MMC loading capacity of neat HA particles was 5.3 ± 1.1 mg/g, whereas HA/MN (1:3) particles could be loaded with about three times more drug, for example, 18.4 ± 0.8 mg/g. The kinetic of MMC drug delivery from the HA/MN-MMC particles were tested in vitro in bladder cancer conditions for example, pH 4.5, 6, and 7.4. The HA-MMC particles released approximately 70% of the loaded drug in 300 h, while 43% of the loaded drug was released from the HA/MN-MMC particles within 600 h under physiological conditions, pH 7.4, 37 °C. The cytotoxicity of HA-based particles on healthy L929 fibroblast cells and HTB-9 human bladder cancer cells was investigated in vitro via MTT tests. Bare MMC inhibited about 90% of L929 fibroblast cells even at 100 µg/mL, but the cell viabilities in the presence of HA-MMC and HA/MN-MMC particles were 85 ± 5 and 109 ± 7% at 1000 µg/mL, respectively. The HA/MN-MMC (1:3) particles at 1000 µg/mL were found capable of destroying half of HTB-9 human bladder cancer cells within 24 h. Interestingly, the same particles at 50 µg/mL destroyed almost all the cancer cells with 8 ± 5% cell viability in 72 h of incubation time. The designed HA/MN-MMC (1:3) particles were found to afford a chemotherapeutic effect on the tumor cancers while reducing the toxicity of MMC against L929 fibroblast cells.


Assuntos
Mitomicina , Neoplasias da Bexiga Urinária , Humanos , Mitomicina/farmacologia , Ácido Hialurônico/uso terapêutico , Manitol/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Polímeros/uso terapêutico , Excipientes/uso terapêutico
3.
J Fluoresc ; 31(6): 1705-1717, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34424483

RESUMO

Nanostructured fluorescent particles derived from natural molecules were prepared by a green synthesis technique employing a microwave method. The precursors citric acid (CA) and cysteine (Cys) were used in the preparation of S- and N-doped Cys carbon dots (Cys CDs). Synthesis was completed in 3 min. The graphitic structure revealed by XRD analysis of Cys CDs dots had good water dispersity, with diameters in the range of 2-20 nm determined by TEM analysis. The isoelectric point of the S, N-doped CDs was pH value for 5.2. The prepared Cys CDs displayed excellent fluorescence intensity with a high quantum yield of 75.6 ± 2.1%. Strong antimicrobial capability of Cys CDs was observed with 12.5 mg/mL minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria with the highest antimicrobial activity obtained against Staphylococcus aureus. Furthermore, Cys CDs provided total biofilm eradication and inhibition abilities against Pseudomonas aeruginosa at 25 mg/mL concentration. Cys CDs are promising antioxidant materials with 1.3 ± 0.1 µmol Trolox equivalent/g antioxidant capacity. Finally, Cys CDs were also shown to inhibit the acetylcholinesterase (AChE) enzyme, which is used in the treatment of Alzheimer's disease, even at the low concentration of 100 µg/mL.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Ácido Cítrico/farmacologia , Cisteína/farmacologia , Corantes Fluorescentes/farmacologia , Acetilcolinesterase/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Benzotiazóis/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Ácido Cítrico/química , Cisteína/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pontos Quânticos/química , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfônicos/antagonistas & inibidores
4.
Int J Pharm ; 576: 119024, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926974

RESUMO

Here, the aim was to design and use a long-lasting antibiotic release system for prevention of postoperative infections in ophthalmic surgery. Ciprofloxacin and vancomycin-conjugated hyaluronic acid (HA) particles were prepared as drug carriers for sustained release of antibiotics. The antimicrobial effects of the released drugs were determined by disc-diffusion and macro-dilution tests at different times up to 2 weeks. Slow degradable HA particles were obtained with 35.2 wt% degradation within 21 days. The drug loading amount was increased by employing two sequential chemical linking (conjugation, 2C) and one physical absorption loading (A) procedures (2C + A processes) from 148 ± 8 to 355 ± 11 mg/g HA particles for vancomycin. The amounts of vancomycin and ciprofloxacin that were released linearly was estimated as 64.35 ± 7.35 and 25.00 ± 0.68 mg/g, respectively, from drug-conjugated HA particles in 100 h. Antimicrobial studies revealed that antibiotic-conjugated HA particles could inhibit the growth of microorganisms from 1 h to 1 week. The MBC values were measured as 0.25, 4.0, and 0.25 mg/mL against Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, respectively, after 72 h incubation time. Cytotoxicity studies showed no difference between fibroblast growth or corneal thickness after 5 days with or without HA-antibiotic particles. The drug release studies and antimicrobial activity of antibiotic-loaded HA particles with time against various bacteria further revealed that HA particles are very effective in preventing bacterial infections. Likewise, cytotoxicity studies suggest that these particles pose no toxicity to eukaryotic cells, including corneal endothelium.


Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Portadores de Fármacos , Infecções Oculares Bacterianas/prevenção & controle , Ácido Hialurônico/química , Vancomicina/administração & dosagem , Administração Oftálmica , Antibacterianos/química , Antibacterianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Infecções Oculares Bacterianas/microbiologia , Humanos , Ácido Hialurônico/toxicidade , Cinética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Solubilidade , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento , Vancomicina/química , Vancomicina/toxicidade
5.
J Fluoresc ; 29(5): 1191-1200, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502060

RESUMO

Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/análise , Tecnologia Biomédica , Testes de Coagulação Sanguínea , Corantes Fluorescentes/química , Pontos Quânticos/química , Aminoácidos/síntese química , Carbono/química , Corantes Fluorescentes/síntese química , Voluntários Saudáveis , Hemólise , Humanos , Micro-Ondas , Estrutura Molecular , Nitrogênio/química , Enxofre/química
6.
Int J Biol Macromol ; 130: 627-635, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840861

RESUMO

We present here preparation of mechanically strong and biocompatible cryogel composites based on hyaluronic acid (HA) and halloysite nanotubes (HNTs) of various compositions, and their applications as scaffold for different cell growing media. Uniaxial compression tests reveal that the incorporation of HNTs into HA cryogels leads to a ~2.5-fold increase in their Young moduli, e.g., from 38 ±â€¯1 to 99 ±â€¯4 kPa at a HA:HNTs weight ratio of 1:2. Although HA:HNTs based cryogels were found to be blood compatible with 1.37 ±â€¯0.11% hemolysis ratio at a HA:HNTs weight ratio of 1:2, they trigger thrombogenic activity with a blood clotting index of 17.3 ±â€¯4.8. Remarkably, HA:HNTs cryogel composites were found to be excellent scaffold materials in the proliferation of rat mesenchymal stem cells (MSC), human cervical carcinoma cells (HeLa), and human colon cancer cells (HCT116). The cell studies revealed that an increased amount of HNT embedding into HA cryogels leads to an increase of MSC proliferation.


Assuntos
Argila/química , Criogéis/química , Ácido Hialurônico/química , Nanotubos/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Células Cultivadas , Hemólise , Humanos , Teste de Materiais , Nanotubos/ultraestrutura , Análise Espectral , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA