Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(5): e0011280, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130109

RESUMO

BACKGROUND: Blood meal and infections cause redox imbalance and oxidative damage in mosquitoes which triggers the mosquito's system to produce antioxidants in response to increased oxidative stress. Important pathways activated owing to redox imbalance include taurine, hypotaurine and glutathione metabolism. The present study was undertaken to evaluate the role of these pathways during chikungunya virus (CHIKV) infection in Aedes aegypti mosquitoes. METHODOLOGY: Using a dietary L-cysteine supplement system, we upregulated these pathways and evaluated oxidative damage and oxidative stress response upon CHIKV infection using protein carbonylation and GST assays. Further, using a dsRNA based approach, we silenced some of the genes involved in synthesis and transport of taurine and hypotaurine and then evaluated the impact of these genes on CHIKV infection and redox biology in the mosquitoes. CONCLUSIONS: We report that CHIKV infection exerts oxidative stress in the A. aegypti, leading to oxidative damage and as a response, an elevated GST activity was observed. It was also observed that dietary L-cysteine treatment restricted CHIKV infection in A. aegypti mosquitoes. This L-cysteine mediated CHIKV inhibition was coincided by enhanced GST activity that further resulted in reduced oxidative damage during the infection. We also report that silencing of genes involved in synthesis of taurine and hypotaurine modulates CHIKV infection and redox biology of Aedes mosquitoes during the infection.


Assuntos
Aedes , Febre de Chikungunya , Animais , Cisteína , Taurina/farmacologia , Glutationa
2.
J Ethnopharmacol ; 302(Pt A): 115762, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36181982

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chikungunya disease (CHIKD) is caused by the alphavirus, chikungunya virus (CHIKV) and is characterized by acute fever and joint inflammation; the inflammation continues even after clearance of the virus from the system, persisting for several months to years. Currently, there are no modern medicines/vaccines available for its treatment and use of over-the-counter anti-inflammatory generic medicines to relieve symptoms is generally practiced. In India, Indian traditional medicines hold a lot of promise to treat this infection and are routinely used during outbreaks. AIM OF THE STUDY: In the present study, we characterized the phytochemical and physicochemical properties of aqueous and ethanol extracts of the Vathasura Kudineer (VSK), a Andrographis based Siddha polyherbal formulation. Additionally, we evaluated its immunomodulatory and antiviral potential using an in vitro system. MATERIALS AND METHODS: Aqueous and ethanolic extracts of VSK were prepared and their physico and phytochemical properties were obtained by biochemical and biophysical assays, HPTLC and FTIR. The aqueous extracts of VSK and several of its ingredients were evaluated for their cytotoxicity in Vero cells and using the maximum non-toxic concentration (MNTC), were processed further for evaluating their ability to inhibit CHIKV infection in Vero cells. We performed the co-treatment assay with ethanol extract of VSK and several of its ingredients to assess the antiviral activity against chikungunya virus on Vero cells and through pre-treatment assay (anti-adhesive effect), co-incubation assay (virucidal effect) and post-treatment assay (post-entry effect) were evaluated. Further, we tested the aqueous extract of VSK along with some of its ingredients for their immunomodulatory properties. We performed antioxidant and anti-inflammatory assays using LPS-simulated RAW 264.7 cells. For antioxidant capacity of extracts, we performed extra-cellular ABTS radical scavenging activity and intra-cellular effects on ROS generation and SOD activity. We assessed the effect on most important inflammatory mediators like Nitric oxide (NO) and Prostaglandin E2 (PGE2) and pro-inflammatory cytokines like interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNFα). RESULTS: We provided the fingerprint of the phytochemicals of both ethanol and aqueous extracts of VSK that can be used for identification. We observed that ethanol extract was able to inhibit CHIKV infection at MNTC with 48 h of treatment on Vero cells. Its ingredient VSKI-As (Anethum sowa) found to be most effective to show virucidal effect while VSKI-Cs (Clerodendrum serratum) and VSKI-Pn (Pipper nigrum) found to be effective in post-entry effect. VSK was able to show ABTS radical scavenging activity, reduce ROS generation, inhibit the inflammatory mediators (NO and PGE2) and pro-inflammatory cytokines (IL-1ß and TNFα) production in LPS-stimulated RAW 264.7 cells. CONCLUSIONS: We provided the evidence that VSK has both immunomodulatory as well as antiviral potential. It shows virucidal as well as post-entry effects on chikungunya virus. VSK can inhibit pro-inflammatory cytokines, IL-1ß and TNFα production by suppressing the inflammatory mediators, NO and PGE2.


Assuntos
Andrographis , Febre de Chikungunya , Vírus Chikungunya , Chlorocebus aethiops , Animais , Antioxidantes/farmacologia , Células Vero , Fator de Necrose Tumoral alfa/farmacologia , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio , Extratos Vegetais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação , Inflamação/tratamento farmacológico , Dinoprostona/farmacologia , Citocinas/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Etanol/química , Imunomodulação
3.
Inflammopharmacology ; 30(1): 173-184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075553

RESUMO

In the current scenario, most countries are affected by COVID-19, a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has a massive impact on human health. Previous studies showed that some traditionally used medicinal herbs and their combinations showed synergistic anti-viral and anti-inflammatory activity against SARS-CoV-2 type infections. Therefore, the goal of this study is to demonstrate the anti-viral and anti-inflammatory effects of a novel polyherbal formulation, hereinafter referred to as Imusil, on Vero E6 cell lines and Raw 264.7 murine macrophage cells respectively. The Imusil was subjected to identify its chemical characterisations such as UV-Visible spectrum profile, Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectroscopic (GC-MS) analysis. FT-IR analysis of Imusil peak values with various functional compounds such as alcohol, esters, aliphatic and carboxylic acids. GC-MS analysis of compounds with totally 87 compounds major chemical compounds were identified, such as 3-(Octanoyloxy) propane-1,2-diyl bis(decanoate), Succinic acid, 2-methylhex-3-yl 2,2,2-trifluoroethyl ester, Neophytadiene, 3,5,9-Trioxa-4-phosphaheneicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, hydroxide, inner salt, 4-oxide, (R)-. The anti-viral activity of Imusil against SARS-CoV-2 was assessed using plaque reduction assay and anti-inflammatory study was conducted on lipopolysaccharide (LPS)-induced RAW 264.7 cells. The results obtained from the study reveal that Imusil significantly inhibited SARS-CoV-2 replication in Vero E6 cells and the production of inflammatory mediator's cyclooxygenase-2 and pro-inflammatory cytokines like tumour necrosis factor-α and interleukin- 6 were significantly reduced, along with thwarting the significant oxidative stress by preventing the expression of NOX-2 thereby inhibiting the reactive oxygen species formation. Hence, considering the current study as a novel strategy for mediating the COVID-19 associated aliments, inceptive scientific evidence of Imusil promises its potential therapeutic implications against COVID-19 and inflammatory conditions.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina , Animais , Anti-Inflamatórios/farmacologia , Humanos , Mediadores da Inflamação , Camundongos , Estresse Oxidativo , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Cell Microbiol ; 22(7): e13200, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141690

RESUMO

Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.


Assuntos
Aedes/metabolismo , Aedes/virologia , Vírus da Dengue/fisiologia , Compostos de Amônio Quaternário/metabolismo , Replicação Viral/fisiologia , Animais , Dengue/virologia , Feminino , Imunoglobulinas/química , Mosquitos Vetores/virologia , Compostos de Amônio Quaternário/química , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Proteínas do Envelope Viral
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396899

RESUMO

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Assuntos
Processamento de Proteína Pós-Traducional , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Acetilação , Vírus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidade , Efeito Citopatogênico Viral , Glicosilação , HIV/metabolismo , HIV/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Fosforilação , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/imunologia , Ubiquitinação , Replicação Viral/fisiologia , Zika virus/metabolismo , Zika virus/patogenicidade
6.
Sci Rep ; 6: 38065, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901124

RESUMO

RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.


Assuntos
Vírus Chikungunya/metabolismo , Interferência de RNA , Proteínas não Estruturais Virais/metabolismo , Aedes/metabolismo , Aedes/virologia , Animais , Vírus Chikungunya/genética , Células HEK293 , Humanos , Células Sf9 , Spodoptera , Proteínas não Estruturais Virais/genética
7.
Virol J ; 13: 86, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251040

RESUMO

BACKGROUND: RNA viruses are characterized by high rate of mutations mainly due to the lack of proofreading repair activities associated with its RNA-dependent RNA-polymerase (RdRp). In case of arboviruses, this phenomenon has lead to the existence of mixed population of genomic variants within the host called quasi-species. The stability of strains within the quasi-species lies on mutations that are positively selected which in turn depend on whether these mutations are beneficial in either or both hosts. Coevolution of amino acids (aa) is one phenomenon that leads to establishment of favorable traits in viruses and leading to their fitness. RESULTS: Fourteen CHIKV clinical samples collected over three years were subjected to RT-PCR, the four non-structural genes amplified and subjected to various genetic analyses. Coevolution analysis showed 30 aa pairs coevolving in nsP1, 23 aa pairs coevolving in nsP2, 239 in nsP3 and 46 aa coevolving pairs in nsP4 when each non-structural protein was considered independently. Further analysis showed that 705 amino acids pairs of the non-structural polyproteins coevolved together with a correlation coefficient of ≥0.5. Functional relevance of these coevolving amino acids in all the nonstructural proteins of CHIKV were predicted using Eukaryotic Linear Motifs (ELMs) of human. CONCLUSIONS: The present study was undertaken to study co-evolving amino acids in the non-structural proteins of chikungunya virus (CHIKV), an important arbovirus. It was observed that several amino acids residues were coevolving and shared common functions.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Evolução Molecular , Proteínas não Estruturais Virais/genética , Aminoácidos/genética , Vírus Chikungunya/isolamento & purificação , Humanos , Análise de Sequência de DNA
8.
Virol J ; 9: 100, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632412

RESUMO

BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.


Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Surtos de Doenças , Variação Genética , RNA Viral/genética , Vírus Chikungunya/isolamento & purificação , Análise por Conglomerados , Humanos , Índia/epidemiologia , Mutação de Sentido Incorreto , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Estruturais Virais/genética
9.
BMC Mol Biol ; 9: 47, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18477411

RESUMO

BACKGROUND: Plasmodium falciparum cysteine proteases (falcipains) play indispensable roles in parasite infection and development, especially in the process of host erythrocyte rupture/invasion and hemoglobin degradation. No detailed molecular analysis of transcriptional regulation of parasite proteases especially cysteine proteases has yet been reported. In this study, using a combination of transient transfection assays and electrophoretic mobility shift assays (EMSA), we demonstrate the presence of stage specific nuclear factors that bind to unique sequence elements in the 5'upstream regions of the falcipains and probably modulate the expression of cysteine proteases. RESULTS: Falcipains differ in their timing of expression and exhibit ability to compensate each other's functions at asexual blood stages of the parasite. Present study was undertaken to study the transcriptional regulation of falcipains. Transient transfection assay employing firefly luciferase as a reporter revealed that a ~1 kb sequence upstream of translational start site is sufficient for the functional transcriptional activity of falcipain-1 gene, while falcipain-2, -2' and -3 genes that exist within 12 kb stretch on chromosome 11 require ~2 kb upstream sequences for the expression of reporter luciferase activity. EMSA analysis elucidated binding of distinct nuclear factors to specific sequences within the 5'upstream regions of falcipain genes. Analysis of falcipains' 5'upstream regulatory regions did not reveal the presence of sequences known to bind general eukaryotic factors. However, we did find parasite specific sequence elements such as poly(dA) poly(dT) tracts, CCAAT boxes and a single 7 bp-G rich sequence, (A/G)NGGGG(C/A) in the 5' upstream regulatory regions of these genes, thereby suggesting the role(s) of Plasmodium specific transcriptional factors in the regulation of falcipain genes. CONCLUSION: Taken together, these results suggest that expression of Plasmodium cysteine proteases is regulated at the transcriptional level and parasite specific factors regulate the expression of falcipain genes. These findings open new venues for further studies in identification of parasite specific transcription factors.


Assuntos
Cisteína Endopeptidases/genética , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Plasmodium falciparum/metabolismo , Fatores de Transcrição/metabolismo , Região 5'-Flanqueadora , Animais , Cisteína Endopeptidases/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA