Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(4): 2543-2560, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633079

RESUMO

Anastomosis is a common and critical part of reconstructive procedures within gastrointestinal, urologic, and gynecologic surgery. The use of autonomous surgical robots such as the smart tissue autonomous robot (STAR) system demonstrates an improved efficiency and consistency of the laparoscopic small bowel anastomosis over the current da Vinci surgical system. However, the STAR workflow requires auxiliary manual monitoring during the suturing procedure to avoid missed or wrong stitches. To eliminate this monitoring task from the operators, we integrated an optical coherence tomography (OCT) fiber sensor with the suture tool and developed an automatic tissue classification algorithm for detecting missed or wrong stitches in real time. The classification results were updated and sent to the control loop of STAR robot in real time. The suture tool was guided to approach the object by a dual-camera system. If the tissue inside the tool jaw was inconsistent with the desired suture pattern, a warning message would be generated. The proposed hybrid multilayer perceptron dual-channel convolutional neural network (MLP-DC-CNN) classification platform can automatically classify eight different abdominal tissue types that require different suture strategies for anastomosis. In MLP, numerous handcrafted features (∼1955) were utilized including optical properties and morphological features of one-dimensional (1D) OCT A-line signals. In DC-CNN, intensity-based features and depth-resolved tissues' attenuation coefficients were fully exploited. A decision fusion technique was applied to leverage the information collected from both classifiers to further increase the accuracy. The algorithm was evaluated on 69,773 testing A-line data. The results showed that our model can classify the 1D OCT signals of small bowels in real time with an accuracy of 90.06%, a precision of 88.34%, and a sensitivity of 87.29%, respectively. The refresh rate of the displayed A-line signals was set as 300 Hz, the maximum sensing depth of the fiber was 3.6 mm, and the running time of the image processing algorithm was ∼1.56 s for 1,024 A-lines. The proposed fully automated tissue sensing model outperformed the single classifier of CNN, MLP, or SVM with optimized architectures, showing the complementarity of different feature sets and network architectures in classifying intestinal OCT A-line signals. It can potentially reduce the manual involvement of robotic laparoscopic surgery, which is a crucial step towards a fully autonomous STAR system.

2.
Int J Comput Assist Radiol Surg ; 18(3): 545-552, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36282465

RESUMO

OBJECTIVES: Manually-collected suturing technical skill scores are strong predictors of continence recovery after robotic radical prostatectomy. Herein, we automate suturing technical skill scoring through computer vision (CV) methods as a scalable method to provide feedback. METHODS: Twenty-two surgeons completed a suturing exercise three times on the Mimic™ Flex VR simulator. Instrument kinematic data (XYZ coordinates of each instrument and pose) were captured at 30 Hz. After standardized training, three human raters manually video segmented suturing task into four sub-stitch phases (Needle handling, Needle targeting, Needle driving, Needle withdrawal) and labeled the corresponding technical skill domains (Needle positioning, Needle entry, Needle driving, and Needle withdrawal). The CV framework extracted RGB features and optical flow frames using a pre-trained AlexNet. Additional CV strategies including auxiliary supervision (using kinematic data during training only) and attention mechanisms were implemented to improve performance. RESULTS: This study included data from 15 expert surgeons (median caseload 300 [IQR 165-750]) and 7 training surgeons (0 [IQR 0-8]). In all, 226 virtual sutures were captured. Automated assessments for Needle positioning performed best with the simplest approach (1 s video; AUC 0.749). Remaining skill domains exhibited improvements with the implementation of auxiliary supervision and attention mechanisms when deployed separately (AUC 0.604-0.794). All techniques combined produced the best performance, particularly for Needle driving and Needle withdrawal (AUC 0.959 and 0.879, respectively). CONCLUSIONS: This study demonstrated the best performance of automated suturing technical skills assessment to date using advanced CV techniques. Future work will determine if a "human in the loop" is necessary to verify surgeon evaluations.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgiões , Masculino , Humanos , Cirurgiões/educação , Automação , Procedimentos Neurocirúrgicos , Suturas , Competência Clínica , Técnicas de Sutura/educação , Procedimentos Cirúrgicos Robóticos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA