Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819090

RESUMO

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Antimaláricos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/parasitologia , Plasmodium/metabolismo , Plasmodium falciparum
2.
J Nat Prod ; 84(12): 3080-3089, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34802242

RESUMO

Five new cyclohexene derivatives, dipandensin A and B (1 and 2) and pandensenols A-C (3-5), and 16 known secondary metabolites (6-21) were isolated from the methanol-soluble extracts of the stem and root barks of Uvaria pandensis. The structures were characterized by NMR spectroscopic and mass spectrometric analyses, and that of 6-methoxyzeylenol (6) was further confirmed by single-crystal X-ray crystallography, which also established its absolute configuration. The isolated metabolites were evaluated for antibacterial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis and the Gram-negative bacteria Enterococcus raffinosus, Escherichia coli, Paraburkholderia caledonica, Pectobacterium carotovorum, and Pseudomonas putida, as well as for cytotoxicity against the MCF-7 human breast cancer cell line. A mixture of uvaretin (20) and isouvaretin (21) exhibited significant antibacterial activity against B. subtilis (EC50 8.7 µM) and S. epidermidis (IC50 7.9 µM). (8'α,9'ß-Dihydroxy)-3-farnesylindole (12) showed strong inhibitory activity (EC50 9.8 µM) against B. subtilis, comparable to the clinical reference ampicillin (EC50 17.9 µM). None of the compounds showed relevant cytotoxicity against the MCF-7 human breast cancer cell line.


Assuntos
Cicloexenos/química , Oxigênio/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Caules de Planta/química , Uvaria/química , Cristalografia por Raios X/métodos , Cicloexenos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
3.
Life (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807495

RESUMO

Small molecules are routinely used to inhibit protein kinases, but modulators capable of enhancing kinase activity are rare. We have previously shown that the small molecule INR119, designed as an inhibitor of MEK1/2, will enhance the activity of its fission yeast homologue, Wis1, under oxidative stress. To investigate the generality of these findings, we now study the effect of INR119 in human cells under similar conditions. Cells of the established breast cancer line MCF-7 were exposed to H2O2 or phenothiazines, alone or combined with INR119. In line with the previous results in fission yeast, the phosphorylation of the MAPKs ERK and p38 increased substantially more with the combination treatment than by H2O2 or phenothiazines, whereas INR119 alone did not affect phosphorylation. We also measured the mRNA levels of TP53 and BAX, known to be affected by ERK and p38 activity. Similarly, the combination of INR119 and phenothiazines increased both mRNAs to higher levels than for phenothiazines alone. In conclusion, the mechanism of action of INR119 on its target protein kinase may be conserved between yeast and humans.

4.
ACS Infect Dis ; 7(4): 759-776, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33689276

RESUMO

Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Indóis/farmacologia , Chaperonas Moleculares , Plasmodium falciparum
5.
Fitoterapia ; 151: 104857, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582268

RESUMO

The new isoflavonoid kirkinone A (1) and biflavonoid kirkinone B (2) along with six known compounds (3-8) were isolated from the methanolic extract of the root bark of Ochna kirkii. The compounds were identified by NMR spectroscopic and mass spectrometric analyses. Out of the eight isolated natural products, calodenin B (4) and lophirone A (6) showed significant antibacterial activity against the Gram-positive bacterium Bacillus subtilis with MIC values of 2.2 and 28 µM, and cytotoxicity against the MCF-7 human breast cancer cell line with EC50 values of 219.3 and 19.2 µM, respectively. The methanolic crude extract of the root bark exhibited cytotoxicity at EC50 8.4 µg/mL. The isolated secondary metabolites and the crude extract were generally inactive against the Gram-negative Escherichia coli (MIC ≥400 µg/mL). Isolation of biflavonoids and related secondary metabolites from O. kirkii demonstrates their chemotaxonomic significance to the genus Ochna and to other members of the family Ochnaceae.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Ochnaceae/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Biflavonoides/isolamento & purificação , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Raízes de Plantas/química , Tanzânia
6.
J Nat Prod ; 84(2): 364-372, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33511842

RESUMO

Two new biflavanones (1 and 2), three new bichalconoids (3-5), and 11 known flavonoid analogues (6-16) were isolated from the stem bark extract (CH3OH-CH2Cl2, 7:3, v/v) of Ochna holstii. The structures of the isolated metabolites were elucidated by NMR spectroscopic and mass spectrometric analyses. The crude extract and the isolated metabolites were evaluated for antibacterial activity against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) as well as for cytotoxicity against the MCF-7 human breast cancer cell line. The crude extract and holstiinone A (1) exhibited moderate antibacterial activity against B. subtilis with MIC values of 9.1 µg/mL and 14 µM, respectively. The crude extract and lophirone F (14) showed cytotoxicity against MCF-7 with EC50 values of 11 µg/mL and 24 µM, respectively. The other isolated metabolites showed no significant antibacterial activities (MIC > 250 µM) and cytotoxicities (EC50 ≥ 350 µM).


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Flavonoides/farmacologia , Ochnaceae/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Chalconas/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Flavonoides/isolamento & purificação , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Tanzânia
7.
Fitoterapia ; 149: 104809, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33359421

RESUMO

Two new prenylated dihydrochalcones (1,2) and eighteen known secondary metabolites (3-20) were isolated from the CH2Cl2-MeOH (1:1) extracts of the roots, the stem bark and the leaves of Eriosema montanum Baker f. (Leguminosae). The structures of the isolated compounds were characterized by NMR, IR, and UV spectroscopic and mass spectrometric analyses. The structures of compounds 5, 10, 11 and 13 were confirmed by single crystal X-ray diffraction. The antibacterial activity of the crude extracts and the isolated constituents were established against Gram-positive and Gram-negative bacteria. Among the tested compounds, 1-4 and 10 showed strong activity against the Gram-positive bacterium Bacillus subtilis with minimum inhibitory concentration (MIC) ranging from 3.1 to 8.9 µM, as did the leaf crude extract with an MIC of 3.0 µg/mL. None of the crude extracts nor the isolated compounds were active against Escherichia coli. Compounds 1, 3 and 4 showed higher cytotoxicity, evaluated against the human breast cancer cell line MCF-7, with EC50 of 7.0, 18.0 and 18.0 µM, respectively. These findings contribute to the phytochemical understanding of the genus Eriosema, and highlight the pharmaceutical potential of prenylated dihydrochalcones.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Fabaceae/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Chalconas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química , Raízes de Plantas/química , Prenilação , Ruanda , Metabolismo Secundário
8.
Artigo em Inglês | MEDLINE | ID: mdl-32601162

RESUMO

Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii Transmission-blocking activity was observed for epirubicin in vitro and in vivo Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Assuntos
Antimaláricos , Malária Vivax , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Epirubicina/uso terapêutico , Malária Vivax/tratamento farmacológico , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética
9.
Mol Cell Biol ; 40(7)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31932483

RESUMO

Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2 The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2in vitro and significantly increased Wis1 activation by low levels of H2O2in vivo We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.


Assuntos
Peróxido de Hidrogênio/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cisteína/química , Regulação Fúngica da Expressão Gênica/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
10.
J Nat Prod ; 83(2): 210-215, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31986029

RESUMO

Three new oxygenated cyclohexene derivatives, trichocarpeols A (1), B (2), and C (3), along with nine known secondary metabolites, were isolated from the methanolic root extract of Monanthotaxis trichocarpa. They were identified by NMR spectroscopic and mass spectrometric analyses, and the structure of trichocarpeol A (1) was confirmed by single-crystal X-ray diffraction. Out of the 12 isolated natural products, uvaretin (4) showed activity against the Gram-positive bacterium Bacillus subtilis with a MIC value of 18 µM. None of the isolated metabolites was active against the Gram-negative Escherichia coli at a ∼5 mM (2000 µg/mL) concentration. Whereas 4 showed cytotoxicity at EC50 10.2 µM against the MCF-7 human breast cancer cell line, the other compounds were inactive or not tested.


Assuntos
Annonaceae/química , Antibacterianos/isolamento & purificação , Bacillus subtilis/química , Cicloexenos/isolamento & purificação , Oxigênio/química , Raízes de Plantas/química , Antibacterianos/química , Cicloexenos/química , Humanos , Estrutura Molecular
11.
Cell Biol Int ; 44(2): 412-423, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31538680

RESUMO

Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early-stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+ , the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9-1-1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9-1-1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9-1-1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Ciclo Celular , Proliferação de Células , Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Hidrolases Anidrido Ácido/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Transporte de Elétrons , Endopeptidases/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
12.
ACS Omega ; 4(13): 15628-15635, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572864

RESUMO

Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius ("açaí") originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.

13.
BMC Cancer ; 14: 853, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409876

RESUMO

BACKGROUND: The RET tyrosine kinase receptor has emerged as a target in thyroid and endocrine resistant breast cancer. We previously reported the synthesis of kinase inhibitors with potent activity against RET. Herein, we have further investigated the effect of the lead compound SPP86 on RET mediated signaling and proliferation. Based on these observations, we hypothesized that SPP86 may be useful for studying the cellular activity of RET. METHODS: We compared the effects of SPP86 on RET-induced signaling and proliferation in thyroid cancer cell lines expressing RET-PTC1 (TPC1), or the activating mutations BRAFV600E (8505C) and RASG13R (C643). The effect of SPP86 on RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK pathway signaling and cell proliferation in MCF7 breast cancer cells was also investigated. RESULTS: SPP86 inhibited MAPK signaling and proliferation in RET/PTC1 expressing TPC1 but not 8505C or C643 cells. In TPC1 cells, the inhibition of RET phosphorylation required co-exposure to SPP86 and the focal adhesion kinase (FAK) inhibitor PF573228. In MCF7 cells, SPP86 inhibited RET- induced phosphatidylinositide 3-kinases (PI3K)/Akt and MAPK signaling and estrogen receptorα (ERα) phosphorylation, and inhibited proliferation to a similar degree as tamoxifen. Interestingly, SPP86 and PF573228 inhibited RET/PTC1 and GDNF- RET induced activation of Akt and MAPK signaling to a similar degree. CONCLUSION: SPP86 selectively inhibits RET downstream signaling in RET/PTC1 but not BRAFV600E or RASG13R expressing cells, indicating that downstream kinases were not affected. SPP86 also inhibited RET signaling in MCF7 breast cancer cells. Additionally, RET- FAK crosstalk may play a key role in facilitating PTC1/RET and GDNF- RET induced activation of Akt and MAPK signaling in TPC1 and MCF7 cells.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-ret/genética
14.
J Nat Prod ; 77(9): 2060-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25226568

RESUMO

The known flemingins A-C (1-3) and nine new chalcones, named flemingins G-O (4-12), along with deoxyhomoflemingin (13) and emodin (14) were isolated from a leaf extract of Flemingia grahamiana. The isolated chalcones were found to have a geranyl substituent modified into a chromene ring possessing a residual chain, as shown by spectroscopic methods. The leaf extract showed an IC50 value of 5.9 µg/mL in a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. The chalcones flemingins A, B, C, G, and H were active in the DPPH radical scavenging assay (ED50 4.4-8.9 µM), while flemingins A and C showed cytotoxicity against MCF-7 human breast cancer cells (IC50 8.9 and 7.6 µM, respectively).


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Chalconas/isolamento & purificação , Chalconas/farmacologia , Fabaceae/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Compostos de Bifenilo , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Sequestradores de Radicais Livres/química , Humanos , Estrutura Molecular , Fenóis/química , Picratos , Extratos Vegetais/química , Folhas de Planta/química
15.
Molecules ; 19(3): 3264-73, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24642911

RESUMO

Seven naphthoquinones and nine anthraquinones were isolated from the roots of Aloe dawei by chromatographic separation. The purified metabolites were identified by NMR and MS analyses. Out of the sixteen quinones, 6-hydroxy-3,5-dimethoxy-2-methyl-1,4-naphthoquinone is a new compound. Two of the isolates, 5,8-dihydroxy-3-methoxy-2-methylnaphthalene-1,4-dione and 1-hydroxy-8-methoxy-3-methylanthraquinone showed high cytotoxic activity (IC50 1.15 and 4.85 µM) on MCF-7 breast cancer cells, whereas the others showed moderate to low cytotoxic activity against MDA-MB-231 (ER Negative) and MCF-7 (ER Positive) cancer cells.


Assuntos
Aloe/química , Extratos Vegetais/química , Raízes de Plantas/química , Quinonas/química , Quinonas/toxicidade , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ressonância Magnética Nuclear Biomolecular
16.
Environ Mol Mutagen ; 54(5): 327-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677513

RESUMO

The highly conserved DNA glycosylase MutY is implicated in repair of oxidative DNA damage, in particular in removing adenines misincorporated opposite 7,8-dihydro-8-oxoguanine (8-oxo-G). The MutY homologues (MutYH) physically associate with proteins implicated in replication, DNA repair, and checkpoint signaling, specifically with the DNA damage sensor complex 9-1-1 proteins. Here, we ask whether MutYH could have a broader function in sensing and repairing different types of DNA damage induced by conventional chemotherapeutics. Thus, we examined if deletion of the Schizosaccharomyces pombe MutY homologue, Myh1, alone or in combination with deletion of either component of the 9-1-1 sensor complex, influences survival after exposure to different classes of DNA damaging chemotherapeutics that do not act primarily by causing 8-oxoG lesions. We show that Myh1 contributes to survival on genotoxic stresses induced by the oxidizing, DNA double strand break-inducing, bleomycins, or the DNA crosslinking platinum compounds, particularly in a rad1 mutant background. Exposure of cells to cisplatin leads to a moderate overall accumulation of Myh1 protein. Interestingly, we found that DNA damage induced by phleomycin results in increased chromatin association of Myh1. Further, we demonstrate that Myh1 relocalizes to the nucleus after exposure to hydrogen peroxide or chemotherapeutics, most prominently seen after phleomycin treatment. These observations indicate a wider role of Myh1 in DNA repair and DNA damage-induced checkpoint activation than previously thought.


Assuntos
Antineoplásicos/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , DNA Fúngico/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Western Blotting , Cisplatino/toxicidade , DNA Glicosilases/genética , Imunofluorescência , Deleção de Genes , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Compostos Organoplatínicos/toxicidade , Oxaliplatina , Fleomicinas/toxicidade , Proteínas de Schizosaccharomyces pombe/genética
17.
Org Biomol Chem ; 11(27): 4526-36, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23719673

RESUMO

Inhibitors with vicinal 4-fluorophenyl/4-pyridine rings on a five- or six-membered heterocyclic ring are known to inhibit the p38 mitogen-activated protein kinase (MAPK), which is a potential target for rheumatoid arthritis and several different types of cancer. Several substituted azastilbene-based compounds with vicinal 4-fluorophenyl/4-pyridine rings were designed using computational docking, synthesized, and evaluated in a cell-free radiometric p38α assay. The biochemical evaluation shows that the best inhibition (down to 110 nM) is achieved for azastilbene-based compounds having an isopropylamine substituent in the 2-position of the pyridine ring. The inhibition of p38 signaling in human breast cancer cells was observed for two of the compounds.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Compostos Aza/química , Compostos Aza/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Molecules ; 18(1): 311-21, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23271468

RESUMO

Pentas micrantha is used in the East African indigenous medicine to treat malaria. In the first investigation of this plant, the crude methanol root extract showed moderate antiplasmodial activity against the W2- (3.37 µg/mL) and D6-strains (4.00 µg/mL) of Plasmodium falciparum and low cytotoxicity (>450 µg/mL, MCF-7 cell line). Chromatographic separation of the extract yielded nine anthraquinones, of which 5,6-dihydroxylucidin-11-O-methyl ether is new. Isolation of a munjistin derivative from the genus Pentas is reported here for the first time. The isolated constituents were identified by NMR and mass spectrometric techniques and showed low antiplasmodial activities.


Assuntos
Antraquinonas/farmacologia , Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Rubiaceae/química , Antraquinonas/isolamento & purificação , Antimaláricos/isolamento & purificação , Resistência a Medicamentos , Espectroscopia de Ressonância Magnética , Malária/tratamento farmacológico , Extratos Vegetais/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento
19.
Nucleic Acids Res ; 40(17): e130, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22618874

RESUMO

Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell's plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs.


Assuntos
Exossomos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Eletroporação , Humanos , Linfócitos/metabolismo , Monócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção
20.
J Med Chem ; 55(10): 4872-6, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22559926

RESUMO

A series of 3-substituted-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amines have been designed, synthesized, and evaluated as RET protein kinase inhibitors. On the basis of docking results, a small library of pyrazolopyrimidine compounds with an extended hydrophobic side arm was synthesized. The most promising of the compounds (7a) displayed efficient inhibition in vitro and good selectivity when tested on a panel of kinases. Furthermore, 7a inhibited GDNF-induced RET phosphorylation of ERK1/2 in MCF-7 breast cancer cells at concentrations as low as 100 nM.


Assuntos
Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/síntese química , Pirimidinas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Fosforilação , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA