Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 296: 115433, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35690338

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cinobufagin (Huachansu), an aqueous extract from the dried skin of the toad Bufo bufo gargarizans Cantor (frog skin), is a biologically active ingredient of a traditional Chinese medicine cinobufacini that can treat multiple bone pathological conditions such as bone pain, bone tumors, and osteosarcoma. AIM OF THE STUDY: The study aimed to explore the roles and molecular mechanisms of cinobufagin underlying osteosarcoma development and doxorubicin (ADR) resistance. MATERIALS AND METHODS: Cell viability, migration, and invasion were examined by CCK-8, wound healing, and Transwell invasion assays, respectively. RNA sequencing analysis was performed in MNNG/HOS cells treated with or without cinobufagin. The relationships of cinobufagin, forkhead box O1 (FOXO1), and Fc fragment of IgG binding protein (FCGBP) were examined by luciferase reporter, immunofluorescence (IF), RT-qPCR, and chromatin immunoprecipitation (ChIP) assays together with weighted gene co-expression network analysis (WGCNA) analysis. Epithelial-mesenchymal transition (EMT) marker levels were examined through the Western blot assay. The function and molecular basis of cinobufagin in osteosarcoma were further investigated by mouse xenograft experiments. RESULTS: Cinobufagin reduced cell viability, weakened ADR resistance, and inhibited cell migration/invasion/EMT in osteosarcoma cells. Cinobufagin enhanced FOXO1-mediated transcription of downstream genes including FCGBP. FCGBP knockdown partly abrogated the effect of cinobufagin on osteosarcoma cell development. Cinobufagin inhibited the growth of mouse osteosarcoma xenografts in vivo. Cinobufagin reduced the expression of Ki-67 and MMP9 and facilitated caspase-3 expression in osteosarcoma xenografts. CONCLUSION: Cinobufagin suppressed tumor progression and reduced ADR resistance by potentiating FOXO1-mediated transcription of FCGBP in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Venenos de Anfíbios , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Bufanolídeos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo
2.
Bioact Mater ; 13: 260-268, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224307

RESUMO

The recent development of tough tissue adhesives has stimulated intense interests among material scientists and medical doctors. However, these adhesives have seldom been tested in clinically demanding surgeries. Here we demonstrate adhesive anastomosis in organ transplantation. Anastomosis is commonly conducted by dense sutures and takes a long time, during which all the vessels are occluded. Prolonged occlusion may damage organs and even cause death. We formulate a tough, biocompatible, bioabsorbable adhesive that can sustain tissue tension and pressurized flow. We expose the endothelial surface of vessels onto a gasket, press two endothelial surfaces to the adhesive using a pair of magnetic rings, and reopen the bloodstream immediately. The time for adhesive anastomosis is shortened compared to the time for sutured anastomosis. We have achieved adhesive anastomosis of a great vein in transplanting the liver of a pig. After the surgery, the adhesive is absorbed, the vein heals, and the pig lives for over one month.

3.
Tumori ; 108(6): 600-608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632867

RESUMO

OBJECTIVE: The expression of cytoskeleton-related protein γ-adducin (ADD3) was abnormally reduced in some tumors. Functional experiments demonstrated that it could inhibit the malignant progression of lung cancer and glioma, whereas the involvement of ADD3 in osteosarcoma was not clear. This study aimed to investigate the role of ADD3 in osteosarcoma and its upstream regulatory mechanisms. METHODS: ADD3 was knocked down by siRNA transfection and the expression level of ADD3 was determined using quantitative real-time PCR assay and Western blot. CCK-8 assay and colony formation were performed to detect the capacity of cell proliferation. Transwell assay and PI and Annexin V-FITC staining were used to determine cell migration and apoptosis, respectively. Luciferase reporter experiment was performed to investigate the interaction between ADD3 and miR-23b-3p. RESULTS: Based on gene silencing assays, we showed that knockdown of ADD3 suppressed apoptosis and promoted the proliferation and migration of osteosarcoma cells, revealing inhibitory effects of ADD3 in osteosarcoma. Luciferase reporter gene assays confirmed that miR-23b-3p could bind to the 3'-UTR of ADD3. Upregulation of miR-23b-3p not only inhibited the expression of ADD3, but also released the tumor suppressive role of ADD3 on the proliferation and migration of osteosarcoma cells. CONCLUSIONS: Our study found that ADD3 functioned as a tumor suppressor gene during osteosarcoma development. The abnormal upregulation of miR-23b-3p targeted the expression of ADD3 and resulted in accelerated osteosarcoma cell proliferation and migration. Thus, the miR-23b-3p/ADD3 axis contributes to the development of osteosarcoma and ADD3 is a key driver of malignancy.


Assuntos
Neoplasias Ósseas , Proteínas de Ligação a Calmodulina , MicroRNAs , Osteossarcoma , Humanos , Regiões 3' não Traduzidas , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34264848

RESUMO

During operations, surgical mesh is commonly fixed on tissues through fasteners such as sutures and staples. Attributes of surgical mesh include biocompatibility, flexibility, strength, and permeability, but sutures and staples may cause stress concentration and tissue damage. Here, we show that the functions of surgical mesh can be significantly broadened by developing a family of materials called hydrogel-mesh composites (HMCs). The HMCs retain all the attributes of surgical mesh and add one more: adhesion to tissues. We fabricate an HMC by soaking a surgical mesh with a precursor, and upon cure, the precursor forms a polymer network of a hydrogel, in macrotopological entanglement with the fibers of the surgical mesh. In a surgery, the HMC is pressed onto a tissue, and the polymers in the hydrogel form covalent bonds with the tissue. To demonstrate the concept, we use a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan hydrogel and a polyethylene terephthalate (PET) surgical mesh. In the presence a bioconjugation agent, the chitosan and the tissue form covalent bonds, and the adhesion energy reaches above 100 J⋅m-2 At body temperature, PNIPAAm becomes hydrophobic, so that the hydrogel does not swell and the adhesion is stable. Compared with sutured surgical mesh, the HMC distributes force over a large area. In vitro experiments are conducted to study the application of HMCs to wound closure, especially on tissues under high mechanical stress. The performance of HMCs on dynamic living tissues is further investigated in the surgery of a sheep.


Assuntos
Hidrogéis/farmacologia , Telas Cirúrgicas , Cicatrização , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Ovinos , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 111(27): 9762-7, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24961369

RESUMO

Biological systems are exquisitely sensitive to the location and timing of physiologic cues and drugs. This spatiotemporal sensitivity presents opportunities for developing new therapeutic approaches. Polymer-based delivery systems are used extensively for attaining localized, sustained release of bioactive molecules. However, these devices typically are designed to achieve a constant rate of release. We hypothesized that it would be possible to create digital drug release, which could be accelerated and then switched back off, on demand, by applying ultrasound to disrupt ionically cross-linked hydrogels. We demonstrated that ultrasound does not permanently damage these materials but enables nearly digital release of small molecules, proteins, and condensed oligonucleotides. Parallel in vitro studies demonstrated that the concept of applying temporally short, high-dose "bursts" of drug exposure could be applied to enhance the toxicity of mitoxantrone toward breast cancer cells. We thus used the hydrogel system in vivo to treat xenograft tumors with mitoxantrone, and found that daily ultrasound-stimulated drug release substantially reduced tumor growth compared with sustained drug release alone. This approach of digital drug release likely will be applicable to a broad variety of polymers and bioactive molecules, and is a potentially useful tool for studying how the timing of factor delivery controls cell fate in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos , Hidrogéis , Mitoxantrona/uso terapêutico , Ultrassom , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Camundongos , Mitoxantrona/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA