Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
2.
Biochem Biophys Res Commun ; 682: 27-38, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37801987

RESUMO

The solute carrier family 35 F2 (SLC35F2) belongs to membrane-bound carrier proteins that are associated with multiple cancers. The main factor that determines cancer progression is the expression level of SLC35F2. Thus, identifying the E3 ligase that controls SLC35F2 protein abundance in cancer cells is critical. Here, we identified ßTrCP1 interacting with and reducing the SLC35F2 protein level. ßTrCP1 signals SLC35F2 protein ubiquitination and reduces SLC35F2 protein half-life. The mRNA expression pattern between ßTrCP1 and SLC35F2 across a panel of cancer cell lines showed a negative correlation. Additionally, the depletion of ßTrCP1 accumulated SLC35F2 protein and promoted SLC35F2-mediated cell growth, migration, invasion, and colony formation ability in HeLa cells. Overall, we demonstrate that ßTrCP1 acts as a tumor suppressor by controlling SLC35F2 protein abundance in cancer cells. The depletion of ßTrCP1 promotes SLC35F2-mediated carcinogenesis. Thus, we envision that ßTrCP1 may be a potential target for cancer therapeutics.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Células HeLa , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1867(11): 130454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689217

RESUMO

BACKGROUND: The solute carrier family 35 F2 (SLC35F2), belongs to membrane-bound carrier proteins that control various physiological functions and are activated in several cancers. However, the molecular mechanism regulating SLC35F2 protein turnover and its implication in cancer progression remains unexplored. Therefore, screening for E3 ligases that promote SLC35F2 protein degradation is essential during cancer progression. METHODS: The immunoprecipitation and Duolink proximity ligation assays (PLA) were used to determine the interaction between APC/CCdh1 and SLC35F2 proteins. A CRISPR/Cas9-mediated knockdown and rescue experiment were used to validate the functional significance of APC/CCdh1 on SLC35F2 protein stabilization. The ubiquitination function of APC/CCdh1 on SLC35F2 protein was validated using in vitro ubiquitination assay and half-life analysis. The role of APC/CCdh1 regulating SLC35F2-mediated tumorigenesis was confirmed by in vitro oncogenic experiments in HeLa cells. RESULTS: Based on the E3 ligase screen and in vitro biochemical experiments, we identified that APC/CCdh1 interacts with and reduces SLC35F2 protein level. APC/CCdh1 promotes SLC35F2 ubiquitination and decreases the half-life of SLC35F2 protein. On the other hand, the CRISPR/Cas9-mediated depletion of APC/CCdh1 increased SLC35F2 protein levels. The mRNA expression analysis revealed a negative correlation between APC/CCdh1 and SLC35F2 across a panel of cancer cell lines tested. Additionally, we demonstrated that depletion in APC/CCdh1 promotes SLC35F2-mediated cell proliferation, colony formation, migration, and invasion in HeLa cells. CONCLUSION: Our study highlights that APC/CCdh1 is a critical regulator of SLC35F2 protein turnover and depletion of APC/CCdh1 promotes SLC35F2-mediated tumorigenesis. Thus, we envision that APC/CCdh1-SLC35F2 axis might be a therapeutic target in cancer.

4.
Mol Biotechnol ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572221

RESUMO

p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.

5.
J Exp Clin Cancer Res ; 42(1): 121, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170124

RESUMO

BACKGROUND: The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS: We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS: We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION: The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.


Assuntos
Neuroblastoma , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Sistemas CRISPR-Cas , Neuroblastoma/genética , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
6.
Int J Chron Obstruct Pulmon Dis ; 17: 2343-2353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172036

RESUMO

Purpose: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease presenting as multiple phenotypes, such as declining lung function, emphysema, or persistent airflow limitation caused by several risk factors, including cigarette smoking and air pollution. The inherent complexity of COPD phenotypes propounds difficulties for accurate diagnosis and prognosis. Although metabolomic profiles on COPD have been reported, the role of metabolism in COPD-related phenotypes is yet to be determined. In this study, we investigated the association between plasma sphingolipids and amino acids, and between COPD and COPD-related phenotypes in a Korean cohort. Patients and Methods: Blood samples were collected from 120 patients with COPD and 80 control participants who underwent spirometry and quantitative computed tomography. The plasma metabolic profiling was carried out using LC-MS/MS analysis. Results: Among the evaluated plasma sphingolipids, an increase in the metabolism of two specific sphingomyelins, SM (d18:1/24:0) and SM (d18:1/24:1) were significantly associated with COPD. There was no significant correlation between any of the SMs and the emphysema index, FVC and FEV1 in the COPD cohort. Meanwhile, Cer (d18:1/18:0) and Cer (d18:1/24:1) were significantly associated with reduced FEV1. Furthermore, the levels of several amino acids were altered in the COPD group compared to that in the non-COPD group; glutamate and alpha AAA were substantial associated with emphysema in COPD. Kynurenine was the only amino acid significantly associated with reduced FEV1 in COPD. In contrast, there was no correlation between FVC and the elevated metabolites. Conclusion: Our results provide dysregulated plasma metabolites impacting COPD phenotypes, although more studies are needed to explore the underlying mechanism related to COPD pathogenesis.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Cromatografia Líquida , Volume Expiratório Forçado , Glutamatos , Humanos , Cinurenina , Esfingolipídeos , Esfingomielinas , Espectrometria de Massas em Tandem
7.
Cancer Lett ; 525: 146-157, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34742871

RESUMO

The NADPH oxidase (Nox) family of enzymes is solely dedicated in the generation of reactive oxygen species (ROS). ROS generated by Nox are involved in multiple signaling cascades and a myriad of pathophysiological conditions including cancer. As such, ROS seem to have both detrimental and beneficial roles in a number of cellular functions, including cell signaling, growth, apoptosis and proliferation. Regulatory mechanisms are required to control the activity of Nox enzymes in order to maintain ROS balance within the cell. Here, we performed genome-wide screening for deubiquitinating enzymes (DUBs) regulating Nox organizer 1 (NoxO1) protein expression using a CRISPR/Cas9-mediated DUB-knockout library. We identified cylindromatosis (CYLD) as a binding partner regulating NoxO1 protein expression. We demonstrated that the overexpression of CYLD promotes ubiquitination of NoxO1 protein and reduces the NoxO1 protein half-life. The destabilization of NoxO1 protein by CYLD suppressed excessive ROS generation. Additionally, CRISPR/Cas9-mediated knockout of CYLD in PC-3 cells promoted cell proliferation, migration, colony formation and invasion in vitro. In xenografted mice, injection of CYLD-depleted cells consistently led to tumor development with increased weight and volume. Taken together, these results indicate that CYLD acts as a destabilizer of NoxO1 protein and could be a potential tumor suppressor target for cancer therapeutics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Enzima Desubiquitinante CYLD/genética , Neoplasias da Próstata/genética , Ubiquitinação/genética , Animais , Apoptose/genética , Sistemas CRISPR-Cas/genética , Proliferação de Células/genética , Enzimas Desubiquitinantes/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Xenoenxertos , Humanos , Masculino , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética
8.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072621

RESUMO

Colorectal carcinoma is the third foremost cause of cancer-related deaths and accounts for 5.8% of all deaths globally. The molecular mechanisms of colon cancer progression and metastasis control are not well studied. Ubiquitin-specific protease 29 (USP29), a deubiquitinating enzyme, is involved in the occurrence and development of wide variety of cancers. However, its clinical significance and biological roles in colorectal carcinoma (CRC) remain unexplored. In this research, we observed that the rate of USP29 overexpression was higher in colon cancer patient tissues relative to its corresponding normal tissues. CRISPR-Cas9-mediated depletion of USP29 triggered DNA double strand breaks and delayed cell-cycle progression in HCT116 cells. We also demonstrated that USP29 depletion hampers the colony formation and increases apoptosis of HCT116 cells. USP29 knockdown significantly decreased CRC cell proliferation in vitro. Depletion of USP29 in HCT116 cells substantially reduced the tumor volume of mouse xenografts. In conclusion, our study shows that elevated expression of USP29 promotes malignancy in CRC, suggesting that USP29 could be a promising target for colon cancer therapy.

9.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071237

RESUMO

Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.


Assuntos
Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteases Específicas de Ubiquitina/metabolismo , Fosfatases cdc25/metabolismo , Animais , Apoptose , Sistemas CRISPR-Cas , Carcinogênese/genética , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Oncogenes , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Fosfatases cdc25/genética
10.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260674

RESUMO

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by the dysfunction of the enzyme phenylalanine hydroxylase (PAH). Alterations in the level of PAH leads to the toxic accumulation of phenylalanine in the blood and brain. Protein degradation mediated by ubiquitination is a principal cellular process for maintaining protein homeostasis. Therefore, it is important to identify the E3 ligases responsible for PAH turnover and proteostasis. Here, we report that anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 is an E3 ubiquitin ligase complex that interacts and promotes the polyubiquitination of PAH through the 26S proteasomal pathway. Cdh1 destabilizes and declines the half-life of PAH. In contrast, the CRISPR/Cas9-mediated knockout of Cdh1 stabilizes PAH expression and enhances phenylalanine metabolism. Additionally, our current study demonstrates the clinical relevance of PAH and Cdh1 correlation in hepatocellular carcinoma (HCC). Overall, we show that PAH is a prognostic marker for HCC and Cdh1 could be a potential therapeutic target to regulate PAH-mediated physiological and metabolic disorders.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Fenilalanina Hidroxilase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estabilidade Enzimática , Células HEK293 , Meia-Vida , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fenilalanina/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Ubiquitinação
11.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218190

RESUMO

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Hidrolases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hidrolases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
12.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679806

RESUMO

A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.


Assuntos
Fenilcetonúrias/metabolismo , Proteólise , Tirosinemias/metabolismo , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fenilcetonúrias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Tirosinemias/patologia , Ubiquitinação
13.
Cell Death Differ ; 27(11): 3004-3020, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415280

RESUMO

Conventional screening methods for deubiquitinating enzymes (DUBs) have important limitations. A loss-of-function study based on the knockout of DUB genes in mammalian cells can provide an excellent model for exploring DUB function. Here, we used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs), a DUB subfamily, and then systematically screened for DUBs that stabilize the Cdc25A oncoprotein. USP3 was identified as a deubiquitinase of Cdc25A. USP3 depletion reduces the Cdc25A protein level, resulting in a significant delay in cell-cycle progression, and reduces the growth of cervical tumor xenografts in nude mice. Clinically, USP3 expression is positively correlated with Cdc25A protein expression and the poorest survival in breast cancer. We envision that our DUB knockout library kit will facilitate genome-scale screening of functional DUBs for target proteins of interest in a wide range of biomedical fields.


Assuntos
Ciclo Celular/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Neoplasias do Colo do Útero/metabolismo , Fosfatases cdc25/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Análise de Sobrevida , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/metabolismo
14.
Biochim Biophys Acta Rev Cancer ; 1869(1): 1-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29054474

RESUMO

The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.


Assuntos
Antineoplásicos/uso terapêutico , Enzimas Desubiquitinantes/fisiologia , Enzimas Desubiquitinantes/uso terapêutico , Neoplasias/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Ubiquitinação/fisiologia
15.
Drug Discov Today ; 22(12): 1816-1824, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847759

RESUMO

The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Encefalopatias/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/química , Reprodução/fisiologia
16.
Carbohydr Polym ; 173: 121-130, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732850

RESUMO

Advanced biomedical materials can potentially be developed from combinations of natural biodegradable polymers and synthetic polymers. We synthesized bioactive composites based on polypyrrole/chitosan through in-situ electrochemical polymerization in oxalic acid medium. Surface characterization results revealed the influence of chitosan inclusion on polypyrrole (PPy) surface morphology. Contact angle results confirmed the enhancement in surface hydrophilicity due to the addition of chitosan into the PPy matrix. Electrochemical corrosion studies revealed that the composite coatings showed enhanced protective performance compared to pure PPy. Further, we investigated the effect of the composite coatings on the growth of MG-63 human osteoblast cells to assess their biocompatibility. Monte Carlo simulations were engaged to assess the interactions between the metal surface and composite coatings. The composite containing equal parts PPy and chitosan was found to be biocompatible; together with the corrosion protection results, the findings indicated that this bioactive coating material has potential for use in 316L SS implants.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis , Osteoblastos/efeitos dos fármacos , Polímeros/química , Pirróis/química , Linhagem Celular , Humanos , Próteses e Implantes , Propriedades de Superfície
17.
Oncotarget ; 7(12): 14441-57, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26919101

RESUMO

The Lethal giant larvae (Lgl) gene encodes a cortical cytoskeleton protein, Lgl, and is involved in maintaining cell polarity and epithelial integrity. Previously, we observed that Mgl-1, a mammalian homologue of the Drosophila tumor suppressor protein Lgl, is subjected to degradation via ubiquitin-proteasome pathway, and scaffolding protein RanBPM prevents the turnover of the Mgl-1 protein. Consequently, overexpression of RanBPM enhances Mgl-1-mediated cell proliferation and migration. Here, we analyzed the ability of ubiquitin-specific protease 11 (USP11) as a novel regulator of Mgl-1 and it requires RanBPM to regulate proteasomal degradation of Mgl-1. USP11 showed deubiquitinating activity and stabilized Mgl-1 protein. However, USP11-mediated Mgl-1 stabilization was inhibited in RanBPM-knockdown cells. Furthermore, in the cancer cell migration, the regulation of Mgl-1 by USP11 required RanBPM expression. In addition, an in vivo study revealed that depletion of USP11 leads to tumor formation. Taken together, the results indicated that USP11 functions as a tumor suppressor through the regulation of Mgl-1 protein degradation via RanBPM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Tioléster Hidrolases/metabolismo , Células A549 , Apoptose , Movimento Celular , Células HeLa , Humanos , Imunoprecipitação , Neoplasias/metabolismo , Ubiquitinação
18.
Biochem Biophys Res Commun ; 466(2): 180-5, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26343459

RESUMO

Fanconi anemia (FA) is a recessively inherited multigene disease characterized by congenital defects, progressive bone marrow failure, and heightened cancer susceptibility. Monoubiquitination of the FA pathway member FANCD2 contributes to the repair of replication stalling DNA lesions. However, cellular regulation of FANCD2 monoubiquitination remains poorly understood. In the present study, we identified the miR-302 cluster as a potential regulator of FANCD2 by bioinformatics analysis. MicroRNAs (miRNAs) are the major posttranscriptional regulators of a wide variety of biological processes, and have been implicated in a number of diseases. Expression of the exogenous miR-302 cluster (without miR-367) reduced FANCD2 monoubiquitination and nuclear foci formation. Furthermore, miR-302 cells showed extensive chromosomal breakage upon MMC treatment when compared to mock control cells. Taken together, our results suggest that overexpression of miR-302 plays a critical role in the regulation of FANCD2 monoubiquitination, resulting in characteristic defects in DNA repair within cells.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Humanos , Ubiquitinação
19.
Biochim Biophys Acta ; 1855(1): 83-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481051

RESUMO

The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.


Assuntos
Ácido Hialurônico/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Antineoplásicos/uso terapêutico , Citocinas/farmacologia , Indução Enzimática/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/fisiologia , Ácido Hialurônico/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteases Específicas de Ubiquitina/biossíntese
20.
PLoS One ; 7(5): e37772, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662218

RESUMO

BACKGROUND: We previously reported that the USP17 deubiquitinating enzyme having hyaluronan binding motifs (HABMs) interacts with human SDS3 (suppressor of defective silencing 3) and specifically deubiquitinates Lys-63 branched polyubiquitination of SDS3 resulting in negative regulation of histone deacetylase (HDAC) activity in cancer cells. Furthermore, USP17 and SDS3 mutually interact with each other to block cell proliferation in HeLa cells but the mechanism for this inhibition in cell proliferation is not known. We wished to investigate whether the HABMs of USP17 were responsible for tumor suppression activity. METHODOLOGY/PRINCIPAL FINDINGS: Similarly to USP17, we have identified that SDS3 also has three consecutive HABMs and shows direct binding with hyaluronan (HA) using cetylpyridinium chloride (CPC) assay. Additionally, HA oligosaccharides (6-18 sugar units) competitively block binding of endogenous HA polymer to HA binding proteins. Thus, administration of HA oligosaccharides antagonizes the interaction between HA and USP17 or SDS3. Interestingly, HABMs deleted USP17 showed lesser interaction with SDS3 but retain its deubiquitinating activity towards SDS3. The deletion of HABMs of USP17 could not alter its functional regulation on SDS3-associated HDAC activity. Furthermore, to explore whether HABMs in USP17 and SDS3 are responsible for the inhibition of cell proliferation, we investigated the effect of USP17 and SDS3-lacking HABMs on cell proliferation by soft agar, apoptosis, cell migration and cell proliferation assays. CONCLUSIONS: Our results have demonstrated that these HABMs in USP17 and its substrate SDS3 are mainly involved in the inhibition of anchorage-independent tumor growth.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Ácido Hialurônico/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proliferação de Células , Endopeptidases/genética , Ativação Enzimática/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA