Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(4): e0153970, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100653

RESUMO

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.


Assuntos
Reparo do DNA/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas/metabolismo , Interferência de RNA , Transdução de Sinais , Alquilação , Animais , Western Blotting , Sobrevivência Celular , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Estresse do Retículo Endoplasmático/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Genoma , Ensaios de Triagem em Larga Escala , Humanos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteínas/genética , Resposta a Proteínas não Dobradas/genética
2.
Oncotarget ; 5(9): 2499-512, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24811707

RESUMO

Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy.


Assuntos
Diferenciação Celular , MicroRNAs/genética , Neuritos/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neurogênese/genética , Apoptose , Western Blotting , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/metabolismo , Neuritos/metabolismo , Neuroblastoma/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
3.
Bioinformatics ; 30(6): 801-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22321699

RESUMO

MOTIVATION: When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can combine fold change and P-value together is needed for better gene ranking. RESULTS: We defined a gene significance score π-value by combining expression fold change and statistical significance (P-value), and explored its statistical properties. When compared to various existing methods, π-value based approach is more robust in selecting DE genes, with the largest area under curve in its receiver operating characteristic curve. We applied π-value to GSEA and found it comparable to P-value and t-statistic based methods, with added protection against false discovery in certain situations. Finally, in a gene functional study of breast cancer profiles, we showed that using π-value helps elucidating otherwise overlooked important biological functions. AVAILABILITY: http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp CONTACT: xy@ieee.org, cheny8@uthscsa.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Bases de Dados Genéticas , Expressão Gênica , Humanos , Curva ROC , Receptores de Estrogênio/metabolismo
4.
Am J Pathol ; 181(5): 1762-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22985791

RESUMO

Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genoma Humano/genética , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Indução de Remissão , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Exp Hematol ; 40(4): 295-306.e5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22198154

RESUMO

Myelodysplastic syndrome is a complex family of preleukemic diseases in which hematopoietic stem cell defects lead to abnormal differentiation in one or more blood lineages. Disease progression is associated with increasing genomic instability and a large proportion of patients go on to develop acute myeloid leukemia. Primarily a disease of the elderly, it can also develop after chemotherapy. We have previously reported that CREB binding protein (Crebbp) heterozygous mice have an increased incidence of hematological malignancies, and others have shown that CREBBP is one of the genes altered by chromosomal translocations found in patients suffering from therapy-related myelodysplastic syndrome. This led us to investigate whether hematopoietic tumor development in Crebbp(+/-) mice is preceded by a myelodysplastic phase and whether we could uncover molecular mechanisms that might contribute to its development. We report here that Crebbp(+/-) mice invariably develop myelodysplastic/myeloproliferative neoplasm within 9 to 12 months of age. They are also hypersensitive to ionizing radiation and show a marked decrease in poly(ADP-ribose) polymerase-1 activity after irradiation. In addition, protein levels of XRCC1 and APEX1, key components of base excision repair machinery, are reduced in unirradiated Crebbp(+/-) cells or upon targeted knockdown of CREBBP levels. Our results provide validation of a novel myelodysplastic/myeloproliferative neoplasm mouse model and, more importantly, point to defective repair of DNA damage as a contributing factor to the pathogenesis of this currently incurable disease.


Assuntos
Proteína de Ligação a CREB/genética , Reparo do DNA/genética , Raios gama/efeitos adversos , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Tolerância a Radiação/genética , Animais , Proteína de Ligação a CREB/fisiologia , Dano ao DNA , Progressão da Doença , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Instabilidade Genômica , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Pré-Leucemia/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/toxicidade , Irradiação Corporal Total/efeitos adversos
6.
J Biol Chem ; 286(20): 18066-78, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21402708

RESUMO

MicroRNAs function as important regulators of gene expression and are commonly linked to development, differentiation, and diseases such as cancer. To better understand their roles in various biological processes, identification of genes targeted by microRNAs is necessary. Although prediction tools have significantly helped with this task, experimental approaches are ultimately required for extensive target search and validation. We employed two independent yet complementary high throughput approaches to map a large set of mRNAs regulated by miR-122, a liver-specific microRNA implicated in regulation of fatty acid and cholesterol metabolism, hepatitis C infection, and hepatocellular carcinoma. The combination of luciferase reporter-based screening and shotgun proteomics resulted in the identification of 260 proteins significantly down-regulated in response to miR-122 in at least one method, 113 of which contain predicted miR-122 target sites. These proteins are enriched for functions associated with the cell cycle, differentiation, proliferation, and apoptosis. Among these miR-122-sensitive proteins, we identified a large group with strong connections to liver metabolism, diseases, and hepatocellular carcinoma. Additional analyses, including examination of consensus binding motifs for both miR-122 and target sequences, provide further insight into miR-122 function.


Assuntos
Carcinoma Hepatocelular/metabolismo , Genes Neoplásicos , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA