Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Biochem Pharmacol ; : 116259, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705538

RESUMO

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

2.
Gut Liver ; 18(2): 231-244, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987384

RESUMO

Background/Aims: Synchronous multiple gastric cancer (SMGC) accounts for approximately 6% to 14% of gastric cancer (GC) cases. This study aimed to identify risk factors for SMGC. Methods: A total of 14,603 patients diagnosed with GC were prospectively enrolled. Data including age, sex, body mass index, smoking, alcohol consumption, family history, p53 expression, microsatellite instability, cancer classification, lymph node metastasis, and treatment were collected. Risk factors were analyzed using logistic regression analysis between a single GC and SMGC. Results: The incidence of SMGC was 4.04%, and that of early GC (EGC) and advanced GC (AGC) was 5.43% and 3.11%, respectively. Patients with SMGC were older (65.33 years vs 61.75 years, p<0.001) and more likely to be male. Lymph node metastasis was found in 27% of patients with SMGC and 32% of patients with single GC. Multivariate analysis showed that SMGC was associated with sex (male odds ratio [OR], 1.669; 95% confidence interval [CI], 1.223 to 2.278; p=0.001), age (≥65 years OR, 1.532; 95% CI, 1.169 to 2.008; p=0.002), and EGC (OR, 1.929; 95% CI, 1.432 to 2.600; p<0.001). Survival rates were affected by Lauren classification, sex, tumor size, cancer type, distant metastasis, and venous invasion but were not related to the number of GCs. However, the survival rate of AGC with SMGC was very high. Conclusions: SMGC had unique characteristics such as male sex, older age, and EGC, and the survival rate of AGC, in which the intestinal type was much more frequent, was very good (Trial registration number: NCT04973631).


Assuntos
Neoplasias Gástricas , Humanos , Masculino , Idoso , Feminino , Neoplasias Gástricas/patologia , Metástase Linfática , Gastrectomia , Fatores de Risco , Fumar/efeitos adversos , Fumar/epidemiologia , Estudos Retrospectivos , Invasividade Neoplásica , Estadiamento de Neoplasias
3.
Free Radic Biol Med ; 207: 296-307, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473874

RESUMO

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama , Peptidilprolil Isomerase de Interação com NIMA , Feminino , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Oxigênio , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação , Serina/genética , Serina/metabolismo
4.
J Cancer Prev ; 28(1): 3-11, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37033330

RESUMO

In the present study, we investigated the effects of exhaustive exercise and recovery on inflammatory, pro-apoptotic, and anti-oxidative responses in human peripheral blood mononuclear cells (PBMCs). Sixteen volunteers participated in a guided physical activity program in which they were subjected to progressive exercise on the treadmill until they were exhausted followed by an 1-hour recovery period. Isolated human PBMCs were collected before exercise, immediately after exercise, and after 1-hour recovery. Exhaustive exercise induced expression of heme oxygenase-1 and glutamate cysteine ligase catalytic subunit and activation of NF-κB and NF-E2 related factor 2 (Nrf2). Apoptosis, as measured by activity and cleavage of caspase-3 and its substrate PARP also significantly increased. However, induction of redox signaling and the pro-apoptotic response fully returned to the baseline level during the 1-hour recovery period. On the other hand, COX-2 expression was continuously elevated after exercise cessation throughout the 1-hour recovery period. Taking all these findings into account, we conclude that exhaustive exercise transiently induces Nrf2-mediated antioxidant gene expression and eliminates damaged cells through apoptosis as part of an adaptive cytoprotective response against oxidative and inflammatory stress.

5.
Exp Mol Med ; 55(4): 779-793, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009792

RESUMO

Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Cortactina , Proteína-Tirosina Quinases de Adesão Focal , Proteína 1 com Domínio SAM e Domínio HD , Pseudópodes , Transdução de Sinais , Neoplasias Renais/genética , Proteínas rac1 de Ligação ao GTP/genética
6.
Redox Biol ; 62: 102666, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934646

RESUMO

Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.


Assuntos
Dermatite , Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Estresse Oxidativo , Carcinogênese , Raios Ultravioleta/efeitos adversos , Morte Celular
8.
Free Radic Biol Med ; 194: 347-356, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460215

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is highly expressed/activated in most hypoxic tumors including hepatocellular carcinoma (HCC). Another key transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), is also constitutively overactivated in HCC. In an attempt to determine whether HIF-1α and NRF2 could play complementary roles in HCC growth and progression, we investigated the crosstalk between these two transcription factors and underlying molecular mechanisms in cultured HCC cells and experimentally induced hepatocarcinogenesis as well as clinical settings. While silencing of HIF-1α in HepG2 human hepatoma cells did not alter the protein expression of NRF2, NRF2 knockdown markedly reduced the nuclear accumulation of HIF-1α without influencing its mRNA expression. In diethylnitrosamine-induced hepatocarcinogenesis in wild type mice, there was elevated NRF2 expression with concomitant upregulation of HIF-1α. However, this was abolished in Nrf2 knockout mice. NRF2 and HIF-1α co-localized and physically interacted with each other as assessed by in situ proximity ligation and immunoprecipitation assays. In addition, the interaction between NRF2 and HIF-1α as well as their overexpression was found in tumor specimens obtained from HCC patients. In normoxia, HIF-1α undergoes hydroxylation by a specific HIF-prolyl hydroxylase domain protein (PHD), which facilitates ubiquitination and proteasomal degradation of HIF-1α. NRF2 contributes to pseudohypoxia, by directly binding to the oxygen-dependent degradation (ODD) domain of HIF-1α, which hampers the PHD2-mediated hydroxylation, concomitant recruitment of von-Hippel-Lindau and ubiquitination of HIF-1α.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2/genética
9.
Life Sci ; 313: 121217, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442525

RESUMO

AIMS: Aberrant overactivation/overexpression of NRF2 is implicated as a driving event in tumor progression, which has been attributed to its mutation or inactivation of the inhibitory protein, KEAP1. However, alternative mechanisms responsible for sustained activation of NRF2 are less understood. MAIN METHODS: Human colon cancer cell lines and tissues obtained from colorectal cancer (CRC) patients were used. To examine the expression levels of ARD1 and NRF2, Western blot and immunofluorescence analyses were performed. To investigate the potential relevance of NRF2 and ARD1 to human CRC, NRF2 and ARD1 were individually silenced in human colon cancer cells (HCT-116) by transfection with their specific small interfering RNA (siRNA). To determine the functional role of ARD1 in NRF2 regulation, in situ proximate ligation, co-immunoprecipitation, nano-LC-ESI MS/MS, and in vitro acetylation assays were performed. KEY FINDINGS: ARD1 knockdown in human colon cancer cell lines significantly reduced the protein levels of NRF2 without affecting its mRNA expression; however, silencing of NRF2 did not alter ARD1 protein expression. In addition, these two proteins were co-localized and physically interacted with each other both in human colon cancer cells (HCT-116) and human colon tumor tissues. Mechanistically, ARD1 overexpression increased the acetylation levels of NRF2. Moreover, an in vitro acetylation assay and mass spectrometric analysis demonstrated that ARD1 could directly acetylate NRF2. Ectopic expression of mutant forms of ARD1 with defective acetyltransferase activity reduced the stability of NRF2. SIGNIFICANCE: In conclusion, ARD1 may potentiate the oncogenic function of NRF2 in human colon cancer by stabilizing this transcription factor.


Assuntos
Neoplasias do Colo , Fator 2 Relacionado a NF-E2 , Humanos , Linhagem Celular , Neoplasias do Colo/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Espectrometria de Massas em Tandem
10.
J Cancer Prev ; 28(4): 131-142, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205365

RESUMO

Activating nuclear factor-erythroid 2-related factor (Nrf2), a master regulator of redox homeostasis, has been shown to suppress initiation of carcinogenesis in normal cells. However, this transcription factor has recently been reported to promote proliferation of some transformed or cancerous cells. In tumor cells, Nrf2 is prone to mutations that result in stabilization and concurrent accumulation of its protein product. A hyperactivated mutant form of Nrf2 could support the cancer cells for enhanced proliferation, invasiveness, and resistance to chemotherapeutic agents and radiotherapy, which are associated with a poor clinical outcome. Hence understanding mutations in Nrf2 would have a significant impact on the prognosis and treatment of cancer in the era of precision medicine. This perspective would provide an insight into the genetic alterations in Nrf2 and suggest the application of small molecules, RNAi, and genome editing technologies, particularly CRISR-Cas9, in therapeutic intervention of cancer in the context of the involvement of Nrf2 mutations.

11.
J Cancer Prev ; 27(3): 157-169, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36258719

RESUMO

Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD+-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.

12.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628208

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor involved in protection against initiation of carcinogenesis in normal cells. Notably, recent studies have demonstrated that aberrant activation of NRF2 accelerates the proliferation and progression of cancer cells. The differential effects of NRF2 on multi-stage carcinogenesis have raised a concern about the validity of NRF2 activators for chemoprevention. This prompted us to assess the effects of sulforaphane (SFN), a prototypic NRF2 activating chemopreventive phytochemical, on experimentally induced carcinogenesis. In the present study, SFN was daily injected intraperitoneally (25 mg/kg) for 3 months to male C57BL/6 mice at 6 months after single intraperitoneal administration of a hepatocarcinogen, diethylnitrosamine (DEN). The liver to body weight ratio, tumor growth, and the number and the size of hepatomas measured at 9 months after DEN administration were significantly higher in SFN-treated mice than those in vehicle-treated mice. Moreover, the expression of NRF2, its target protein NAD(P)H:quinone oxidoreductase 1, and the cell proliferation marker, proliferating cell nuclear antigen was further elevated in DEN plus SFN-treated mice. These results suggest that once hepatocarcinogenesis is initiated, SFN may stimulate tumor progression.


Assuntos
Dietilnitrosamina , Fator 2 Relacionado a NF-E2 , Animais , Carcinogênese , Dietilnitrosamina/toxicidade , Isotiocianatos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Sulfóxidos
13.
J Cancer Prev ; 27(1): 7-15, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35419301

RESUMO

Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.

14.
J Cancer Prev ; 27(1): 68-76, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35419302

RESUMO

Cancer-associated fibroblasts (CAFs) represent a major component of the tumor microenvironment and interplay with cancer cells by secreting cytokines, growth factors and extracellular matrix proteins. When estrogen receptor-negative breast cancer MDA-MB-231 cells were treated with the CAF-conditioned medium (CAF-CM), Akt and STAT3 involved in cell proliferation and survival were activated through phosphorylation. CAFs secrete fibroblast growth factor 2 (FGF2), thereby stimulating breast cancer cell progression. Akt activation induced by CAF-CM in MDA-MB-231 cells was abolished when FGF2-neutralizing antibody was added. Treatment of MDA-MB-231 cells directly with FGF2 enhanced the phosphorylation of Akt and the FGF receptor (FGFR) substrate, FRS2α. These events were abrogated by siRNA-mediated silencing of FGFR1. In a xenograft mouse model, co-injection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced activation of Akt. Stable knockdown of FGFR1 blunted Akt phosphorylation in xenograft tumors. MDA-MB-231 cells co-cultured with CAFs or directly stimulated with FGF2 exhibited enhanced nuclear localization of FGFR1. Notably, FGF2 stimulation produced reactive oxygen species (ROS) accumulation in MDA-MB-231 cells, and FGF2-induced nuclear accumulation of FGFR1 was abrogated by the ROS scavenging agent, N-acetylcysteine.

15.
Aging (Albany NY) ; 14(3): 1233-1252, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166693

RESUMO

The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.


Assuntos
Amiloide , Endorribonucleases , Imidazóis , Neuroblastoma , Piridinas , eIF-2 Quinase , Amiloide/biossíntese , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Humanos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
16.
Gut Liver ; 16(2): 246-258, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737242

RESUMO

BACKGROUND/AIMS: Heme oxygenase-1 (HO-1) plays a central role in cellular defense against inflammatory insults, and its induction in macrophages potentiates their efferocytic activity. In this study, we explored the potential role of macrophage HO-1 in the resolution of experimentally induced colitis. METHODS: To induce colitis, male C57BL/6 mice were treated with 2% dextran sulfate sodium (DSS) in the drinking water for 7 days. To investigate efferocytosis, apoptotic colon epithelial CCD 841 CoN cells were coincubated with bone marrow-derived macrophages (BMDMs). RESULTS: Administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blunted the resolution of DSS-induced intestinal inflammation and expression of the proresolving M2 macrophage marker CD206. BMDMs treated with apoptotic colonic epithelial cells showed significantly elevated expression of HO-1 and its regulator Nrf2. Under the same experimental conditions, the proportion of CD206-expressing macrophages was also enhanced. ZnPP treatment abrogated the upregulation of CD206 expression in BMDMs engulfing apoptotic colonic epithelial cells. This result was verified with BMDMs isolated from HO-1-knockout mice. BMDMs, when stimulated with lipopolysaccharide, exhibited increased expression of CD86, a marker of M1 macrophages. Coculture of lipopolysaccharide-stimulated BMDMs with apoptotic colonic epithelial cell debris dampened the expression of CD86 as well as the pro-inflammatory cytokines in an HO-1-dependent manner. Genetic ablation as well as pharmacologic inhibition of HO-1 significantly reduced the proportion of efferocytic BMDMs expressing the scavenger receptor CD36. CONCLUSIONS: HO-1 plays a key role in the resolution of experimentally induced colitis by modulating the polarization of macrophages.


Assuntos
Colite , Heme Oxigenase-1 , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Humanos , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Semin Cancer Biol ; 86(Pt 3): 1008-1032, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34838956

RESUMO

Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Antígeno B7-H1 , Proteínas de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores Imunológicos
18.
FASEB J ; 36(1): e22068, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918396

RESUMO

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been frequently overexpressed in many types of malignancy, suggesting its oncogenic function. It recognizes phosphorylated serine or threonine (pSer/Thr) of a target protein and isomerizes the adjacent proline (Pro) residue, thereby altering folding, subcellular localization, stability, and function of target proteins. The oncogenic transcription factor, Nrf2 harbors the pSer/Thr-Pro motif. This prompted us to investigate whether Pin1 could bind to Nrf2 and influence its stability and function in the context of implications for breast cancer development and progression. The correlation between Pin1 and Nrf2 in the triple-negative breast cancer cells was validated by RNASeq analysis as well as immunofluorescence staining. Interaction between Pin1 and Nrf2 was assessed by co-immunoprecipitation and an in situ proximity ligation assay. We found that mRNA and protein levels of Pin1 were highly increased in the tumor tissues of triple-negative breast cancer patients and the human breast cancer cell line. Genetic or pharmacologic inhibition of Pin1 enhanced the ubiquitination and degradation of Nrf2. In contrast, the overexpression of Pin1 resulted in the accumulation of Nrf2 in the nucleus, without affecting its transcription. Notably, the phosphorylation of Nrf2 at serine 215, 408, and 577 is essential for its interaction with Pin1. We also identified phosphorylated Ser104 and Thr277 residues in Keap1, a negative regulator of Nrf2, for Pin1 binding. Pin1 plays a role in breast cancer progression through stabilization and constitutive activation of Nrf2 by competing with Keap1 for Nrf2 binding.


Assuntos
Neoplasias da Mama/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Neoplasias da Mama/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteínas de Neoplasias/genética , Ligação Proteica , Estabilidade Proteica , Proteólise , Ubiquitinação
19.
Mol Oncol ; 16(7): 1555-1571, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34826187

RESUMO

Sirtuin 1 (SIRT1), an NAD+ -dependent histone/protein deacetylase, has multifaceted functions in various biological events such as inflammation, aging, and energy metabolism. The role of SIRT1 in carcinogenesis, however, is still under debate. Recent studies have indicated that aberrant overexpression of SIRT1 is correlated with metastasis and poor prognosis in several types of malignancy, including colorectal cancer. In the present study, we found that both SIRT1 and SIRT1 phosphorylated on serine 27 were coordinately upregulated in colon cancer patients' tissues and human colon cancer cell lines. This prompted us to investigate a role of phospho-SIRT1 in the context of colon cancer progression. A phosphorylation-defective mutant form of SIRT1, in which serine 27 was substituted by alanine (SIRT1-S27A), exhibited lower protein stability compared to that of wild-type SIRT1. Notably, human colon cancer (HCT-116) cells harboring the SIRT1-S27A mutation showed decreased cell proliferation and reduced capability to form xenograft tumor in athymic nude mice, which was accompanied by diminished transcriptional activity of Snail. HCT-116 cells carrying SIRT1-S27A were less capable of deacetylating the Snail protein, with a concomitant decrease in the levels of interleukin (IL)-6 and IL-8 mRNA transcripts. Taken together, these observations suggest that SIRT1 stabilized through phosphorylation on serine 27 exerts oncogenic effects at least partly through deacetylation-dependent activation of Snail and subsequent transcription of IL-6 and IL-8 in human colon cancer cells.


Assuntos
Neoplasias do Colo , MAP Quinase Quinase 4/metabolismo , Sirtuína 1 , Animais , Neoplasias do Colo/metabolismo , Humanos , Camundongos , Camundongos Nus , Oncogenes , Fosforilação , Sirtuína 1/genética
20.
J Cancer Prev ; 26(3): 207-217, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34703823

RESUMO

STAT3 plays a prominent role in proliferation and survival of tumor cells. Thus, STAT3 has been considered to be a prime target for development of anti-cancer therapeutics. The electrophilic cyclopentenone prostaglandin,15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been well recognized for its capability to modulate intracellular signaling pathways involved in cancer cell growth and progression. We previously reported that 15d-PGJ2 had potent cytotoxicity against harvey-ras transformed human mammary epithelial cells through direct interaction with STAT3. In this study, we have attempted to verify the inhibitory effects of 15d-PGJ2 on STAT3 signaling in human breast tumor cells. The triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468 displaying constitutive phosphorylation of STAT3 on the tyrosine 705 (Tyr705) residue, underwent apoptosis upon inhibition of STAT3 by 15d-PGJ2. In contrast, estrogen receptor positive MCF-7 breast cancer cells that do not exhibit elevated STAT3 phosphorylation were much less susceptible to 15d-PGJ2-induced apoptosis as assessed by PARP cleavage. Furthermore, 15d-PGJ2 inhibited interleukin-6-induced tyrosine phosphorylation of STAT3 in LNCaP cells. According to molecular docking studies, 15d-PGJ2 may preferentially bind to the cysteine 259 residue (Cys259) present in the coiled-coil domain of STAT3. Site-directed mutagenesis of STAT3 identified Cys259 to be the critical amino acid for the 15d-PGJ2-induced apoptosis as well as epithelial-to-mesenchymal transition. Taken together, these findings suggest STAT3 inactivation through direct chemical modification of its Cys259 as a potential therapeutic approach for treatment of triple negative breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA