Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 10: 56, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387272

RESUMO

Background: Bubble tea drinks contain tea and tapioca pearls. Chewing tapioca pearls in bubble tea drinks may increase salivary components. Because of its proteins, inorganic components, and enzymes, saliva plays an important role in the body's defense against bacteria and viruses. This study aims to analyze the effect of chewing tapioca pearls in bubble tea drinks on salivary C-reactive protein (CRP) and calcium (Ca) levels. Methods: The inclusion criterion was 18-25 years of age. The exclusion criteria were receiving medication, using dentures, a history of dry mouth, smoking and systemic disease. In the first week of the experiment, subjects drank bubble tea with tapioca pearls for three days (intervention week). In the second week, the same subjects drank tea without pearls for three days (control week). Each subject drank the bubble tea for 5 minutes per day over 3 days. Saliva samples were collected on the first day before bubble tea consumption (pretest) and on the third day after tea consumption (posttest). Saliva collection was performed in the morning (09:00 am-12:00 pm) for 1 minute. Sixty saliva samples were collected from 15 subjects. Salivary CRP levels were measured using a commercial ELISA kit, and Ca levels were determined using semi-quantitative test strips. Results: Salivary CRP decreased significantly on the third day in the intervention group but showed no significant difference with the control group. Calcium levels increased significantly on the third day in both groups. Conclusion: Bubble tea drinks could improve the quality of saliva by decreasing salivary CRP and increasing Ca levels. Trial registration: ClinicalTrials.gov, NCT04670341 (17 th December 2020).


Assuntos
Proteína C-Reativa , Manihot , Proteína C-Reativa/metabolismo , Cálcio/metabolismo , Humanos , Manihot/metabolismo , Mastigação , Melhoria de Qualidade , Saliva , Chá/metabolismo
2.
F1000Res ; 8: 1008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32025288

RESUMO

Background: Pyocyanin (PCN), a highly pathogenic pigment produced by Pseudomonas aeruginosa, induces caspase 3-dependent human B cell (Raji cells) death. The aim of the present study, therefore, was to assess whether antigen-specific IgY antibodies may be protective on PCN-induced Raji cell death. Methods: Chickens were subcutaneously immunized with Freund's complete adjuvant containing PCN, and then given two boosted immunizations.  Anti-PCN IgY antibodies were purified from egg yolk and detected using an agar gel precipitation test (AGPT) and ELISA. Protective effects of antigen-specific IgY on Raji cells were tested using a cell viability assay. Results: AGPT results showed the formation of strong immune complex precipitates, whilst ELISA further confirmed the presence of IgY antibodies specific to PCN at significant concentration. Further experiments showed that anti-PCN IgY antibodies significantly increased PCN-treated Raji cell viability in a dose-dependent fashion (p<0.05). Conclusions: The results of the present study suggest that anti-PCN IgY antibodies may be protective on PCN-induced Raji cell death.


Assuntos
Linfoma , Animais , Galinhas , Gema de Ovo , Humanos , Imunoglobulinas , Lactente , Piocianina
3.
Biomed Res Int ; 2017: 3191752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075644

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa. Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562) and lung (NCI-H292) epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8) and macrophage inflammatory protein-3α/CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa.


Assuntos
Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL20/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Ácidos Graxos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/microbiologia , Inflamação/patologia , Interleucina-8/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade
4.
Biochem Biophys Res Commun ; 404(1): 57-61, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21094139

RESUMO

Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca(2+)]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca(2+)]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.


Assuntos
Bacteriocinas/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Fatores de Transcrição NFATC/metabolismo , Bacteriocinas/farmacologia , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA