Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 54(9): 2409-2419, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449422

RESUMO

BACKGROUND: Obesity-induced hyperglycemia is a significant risk factor for stroke. Integrin α9ß1 is expressed on neutrophils and stabilizes adhesion to the endothelium via ligands, including Fn-EDA (fibronectin containing extra domain A) and tenascin C. Although myeloid deletion of α9 reduces susceptibility to ischemic stroke, it is unclear whether this is mediated by neutrophil-derived α9. We determined the role of neutrophil-specific α9 in stroke outcomes in a mice model with obesity-induced hyperglycemia. METHODS: α9Neu-KO (α9fl/flMRP8Cre+) and littermate control α9WT (α9fl/flMRP8Cre-) mice were fed on a 60% high-fat diet for 20 weeks to induce obesity-induced hyperglycemia. Functional outcomes were evaluated up to 28 days after stroke onset in mice of both sexes using a transient (30 minutes) middle cerebral artery ischemia. Infarct volume (magnetic resonance imaging) and postreperfusion thrombo-inflammation (thrombi, fibrin, neutrophil, phospho-nuclear factor kappa B [p-NFκB], TNF [tumor necrosis factor]-α, and IL [interleukin]-1ß levels, markers of neutrophil extracellular traps) were measured post 6 or 48 hours of reperfusion. In addition, functional outcomes (modified Neurological Severity Score, rota-rod, corner, and wire-hanging test) were measured for up to 4 weeks. RESULTS: Stroke upregulated neutrophil α9 expression more in obese mice (P<0.05 versus lean mice). Irrespective of sex, deletion of neutrophil α9 improved functional outcomes up to 4 weeks, concomitant with reduced infarct, improved cerebral blood flow, decreased postreperfusion thrombo-inflammation, and neutrophil extracellular traps formation (NETosis) (P<0.05 versus α9WT obese mice). Obese α9Neu-KO mice were less susceptible to thrombosis in FeCl3 injury-induced carotid thrombosis model. Mechanistically, we found that α9/cellular fibronectin axis contributes to NETosis via ERK (extracellular signal-regulated kinase) and PAD4 (peptidyl arginine deiminase 4), and neutrophil α9 worsens stroke outcomes via cellular fibronectin-EDA but not tenascin C. Obese wild-type mice infused with anti-integrin α9 exhibited improved functional outcomes up to 4 weeks (P<0.05 versus vehicle). CONCLUSIONS: Genetic ablation of neutrophil-specific α9 or pharmacological inhibition improves long-term functional outcomes after stroke in mice with obesity-induced hyperglycemia, most likely by limiting thrombo-inflammation.


Assuntos
Acidente Vascular Cerebral , Trombose , Masculino , Feminino , Camundongos , Animais , Neutrófilos/patologia , Fibronectinas , Camundongos Obesos , Camundongos Knockout , Acidente Vascular Cerebral/patologia , Trombose/patologia , Inflamação/patologia , NF-kappa B , Infarto , Obesidade/complicações , Obesidade/metabolismo , Camundongos Endogâmicos C57BL
2.
Can J Physiol Pharmacol ; 96(6): 587-596, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29406832

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models. GLP-1R agonist exendin-4, glucagon, and coagonist (Aib2 C24 chimera2) were administered to C57BL6/J mice, in which NAFLD was induced by carbon tetrachloride (CCl4) treatment after high-fat diet (HFD) feeding, and choline-deficient, L-amino-acid-defined HFD (CDAHFD) feeding. Repeated dose administration of coagonist significantly attenuated liver inflammation and steatosis induced by acute and long-term treatment with CCl4 in HFD-fed mice. Coagonist markedly attenuated the CDAHFD-induced expression of TIMP-1, MMP-9, TNF-α, MCP-1, COL1A1, and α-SMA. It also inhibited progression of hepatic steatosis and fibrosis in mice. Exendin-4 was better than glucagon, but coagonist was most effective in reduction of hepatic inflammation as well as steatosis. Coagonist of GLP-1R and GCGR improved NAFLD in C57BL6/J mice. This effect is mediated by reduction in lipotoxicity and inflammation in liver.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Peçonhas/farmacologia , Animais , Exenatida , Glucagon/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico
3.
Chem Biol Interact ; 274: 124-137, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28711658

RESUMO

Membranous nephropathy (MN) is associated with increased oxidative stress and inflammatory markers in the kidney. Betulinic acid (BA) is a potent antioxidant and anti-inflammatory compound isolated from the leaves of Syzygium cumini (L.) Skeels. In the present study, we investigated the effects of BA on experimental MN in rats and explored the mechanisms by which it enhances antioxidant activities and resolves inflammatory condition in experimental MN. Passive Heymann nephritis (PHN) was induced in Sprague-Dawley rats by a single tail vein injection of anti- Fx1A antiserum. The rats were orally administered BA (25 and 50 mg kg -1 d -1) or dexamethasone (DEX; 0.07 mg kg-1, reference compound) for 4 weeks after the induction of PHN. Blood, urine, and kidney tissue were collected for analysis at the end of the study. Treatment of PHN rats with BA or DEX significantly attenuated renal dysfunction, histopathological alterations and reduced immune complex deposition in the kidneys. Furthermore, BA ameliorated mRNA and protein expression of NF-κB, iNOS, TNF-α, Nrf2, HO-1 and NQO1 in the kidney. BA also restored malondialdehyde level and antioxidant enzyme activities in the kidney. In a nutshell, the protective effect of BA can be explained by its anti-inflammatory and anti-oxidant activities, which in turn is due to downregulation of NF-κB pathway and activation of Nrf2. The results indicated that BA can effectively suppress experimental PHN in rats by regulating Nrf2/NF-κB pathways.


Assuntos
Glomerulonefrite Membranosa/prevenção & controle , Proteinúria/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Syzygium/química , Triterpenos/farmacologia , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Antioxidantes/metabolismo , Dexametasona/farmacologia , Feminino , Glomerulonefrite Membranosa/patologia , Complexo Antigênico da Nefrite de Heymann/imunologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Folhas de Planta/química , Folhas de Planta/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Syzygium/metabolismo , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA