Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
JAMA Oncol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949926

RESUMO

Importance: Prostate-specific membrane antigen (PSMA) demonstrates overexpression in prostate cancer and correlates with tumor aggressiveness. PSMA positron emission tomography (PET) is superior to conventional imaging for the metastatic staging of prostate cancer per current research but studies of second-generation PSMA PET radioligands for locoregional staging are limited. Objective: To determine the accuracy of fluorine-18 PSMA-1007 PET/computed tomography (18F-PSMA-1007 PET/CT) compared to multiparametric magnetic resonance imaging (MRI) in the primary locoregional staging of intermediate-risk and high-risk prostate cancers. Design, Setting, and Participants: The Next Generation Trial was a phase 2 prospective validating paired cohort study assessing the accuracy of 18F-PSMA-1007 PET/CT and MRI for locoregional staging of prostate cancer, with results of histopathologic examination as the reference standard comparator. Radiologists, nuclear medicine physicians, and pathologists were blinded to preoperative clinical, pathology, and imaging data. Patients underwent all imaging studies and radical prostatectomies at 2 tertiary care hospitals in Alberta, Canada. Eligible participants included men with intermediate-risk or high-risk prostate cancer who consented to radical prostatectomy. Participants who underwent radical prostatectomy were included in the final analysis. Patients were recruited between March 2022 and June 2023, and data analysis occurred between July 2023 and December 2023. Exposures: All participants underwent both 18F-PSMA-1007 PET/CT and MRI within 2 weeks of one another and before radical prostatectomy. Main Outcomes and Measures: The primary outcome was the correct identification of the prostate cancer tumor stage by each imaging test. The secondary outcomes were correct identification of the dominant nodule, laterality, extracapsular extension, and seminal vesical invasion. Results: Of 150 eligible men with prostate cancer, 134 patients ultimately underwent radical prostatectomy (mean [SD] age at prostatectomy, 62.0 [5.7] years). PSMA PET was superior to MRI for the accurate identification of the final pathological tumor stage (61 [45%] vs 38 [28%]; P = .003). PSMA PET was also superior to MRI for the correct identification of the dominant nodule (126 [94%] vs 112 [83%]; P = .01), laterality (86 [64%] vs 60 [44%]; P = .001), and extracapsular extension (100 [75%] vs 84 [63%]; P = .01), but not for seminal vesicle invasion (122 [91%] vs 115 [85%]; P = .07). Conclusions and Relevance: In this phase 2 prospective validating paired cohort study, 18F-PSMA-1007 PET/CT was superior to MRI for the locoregional staging of prostate cancer. These findings support PSMA PET in the preoperative workflow of intermediate-risk and high-risk tumors.

2.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860363

RESUMO

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Assuntos
Insuficiência Cardíaca , Histonas , Camundongos Transgênicos , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Ubiquitinação , Animais , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Feminino , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Cultivadas , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regiões Promotoras Genéticas , Camundongos Endogâmicos C57BL
3.
JACC CardioOncol ; 5(5): 686-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37969640

RESUMO

Background: Although some cancer therapies have overt and/or subclinical cardiotoxic effects that increase subsequent cardiovascular risk in breast cancer patients, we have recently shown that the breast tumor itself can also induce cardiac hypertrophy through the activation of the endothelin system to contribute to cardiovascular risk. However, the extent to which the suppression of the activation of the endothelin system could improve cardiac remodeling in breast cancer patients has yet to be investigated. Objectives: We aimed to retrospectively assess the cardiac morphology/function in patients with breast cancer before receiving cancer chemotherapy and to investigate if the suppression of the activation of the endothelin system improves cardiac remodeling in a mouse model of breast cancer. Methods: Our study involved 28 previously studied women with breast cancer (including 24 after tumor resection) before receiving adjuvant therapy and 17 control healthy women. In addition, we explored how the endothelin system contributed to breast cancer-induced cardiac remodeling using a mouse model of breast cancer. Results: Our results indicate that before chemotherapy, breast cancer patients already exhibit relative cardiac remodeling and subclinical cardiac dysfunction, which was associated with the activation of the endothelin system. Importantly, our mouse data also show that the endothelin receptor blocker atrasentan significantly lessened cardiac remodeling and improved cardiac function in a preclinical model of breast cancer. Conclusions: Although our findings should be further examined in other preclinical/clinical models, our data suggest that endothelin receptor blockers may play a role in cardiac health in individuals with breast cancer. (Understanding and Treating Heart Failure With Preserved Ejection Fraction: Novel Mechanisms, Diagnostics and Potential Therapeutics [Alberta HEART]; NCT02052804 and Multidisciplinary Team Intervention in Cardio-Oncology [TITAN]; NCT01621659).

4.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746936

RESUMO

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Doenças Autoimunes/genética , Linhagem Celular Tumoral
5.
Sci Transl Med ; 14(669): eabm3565, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322626

RESUMO

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (S37P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (Pkm2 Mut Cre+) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre+ hearts. Nuclear PKM2 prevented caspase-1-dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased S37P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to Pkm2 Mut Cre+ mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased S37P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Fator de Transcrição GATA4/metabolismo , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Piruvato Quinase/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Cell Rep ; 38(11): 110511, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294884

RESUMO

An epithelial-to-mesenchymal transition (EMT) phenotype with cancer stem cell-like properties is a critical feature of aggressive/metastatic tumors, but the mechanism(s) that promote it and its relation to metabolic stress remain unknown. Here we show that Collapsin Response Mediator Protein 2A (CRMP2A) is unexpectedly and reversibly induced in cancer cells in response to multiple metabolic stresses, including low glucose and hypoxia, and inhibits EMT/stemness. Loss of CRMP2A, when metabolic stress decreases (e.g., around blood vessels in vivo) or by gene deletion, induces extensive microtubule remodeling, increased glutamine utilization toward pyrimidine synthesis, and an EMT/stemness phenotype with increased migration, chemoresistance, tumor initiation capacity/growth, and metastatic potential. In a cohort of 27 prostate cancer patients with biopsies from primary tumors and distant metastases, CRMP2A expression decreases in the metastatic versus primary tumors. CRMP2A is an endogenous molecular brake on cancer EMT/stemness and its loss increases the aggressiveness and metastatic potential of tumors.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata , Semaforina-3A , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/patologia , Semaforina-3A/metabolismo , Estresse Fisiológico
7.
Cell Rep ; 35(1): 108935, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826891

RESUMO

Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Diástole/fisiologia , Proteína Forkhead Box O1/metabolismo , Miocárdio/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/deficiência , Glucose/metabolismo , Homeostase , Lipídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL
8.
BMC Cancer ; 20(1): 751, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787791

RESUMO

BACKGROUND: The survival rates of women with breast cancer have improved significantly over the last four decades due to advances in breast cancer early diagnosis and therapy. However, breast cancer survivors have an increased risk of cardiovascular complications following chemotherapy. While this increased risk of later occurring structural cardiac remodeling and/or dysfunction has largely been attributed to the cardiotoxic effects of breast cancer therapies, the effect of the breast tumor itself on the heart prior to cancer treatment has been largely overlooked. Thus, the objectives of this study were to assess the cardiac phenotype in breast cancer patients prior to cancer chemotherapy and to determine the effects of human breast cancer cells on cardiomyocytes. METHODS: We investigated left ventricular (LV) function and structure using cardiac magnetic resonance imaging in women with breast cancer prior to systemic therapy and a control cohort of women with comparable baseline factors. In addition, we explored how breast cancer cells communicate with the cardiomyocytes using cultured human cardiac and breast cancer cells. RESULTS: Our results indicate that even prior to full cancer treatment, breast cancer patients already exhibit relative LV hypertrophy (LVH). We further demonstrate that breast cancer cells likely contribute to cardiomyocyte hypertrophy through the secretion of soluble factors and that at least one of these factors is endothelin-1. CONCLUSION: Overall, the findings of this study suggest that breast cancer cells play a greater role in inducing structural cardiac remodeling than previously appreciated and that tumor-derived endothelin-1 may play a pivotal role in this process.


Assuntos
Neoplasias da Mama/complicações , Comunicação Celular/fisiologia , Endotelina-1/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Miócitos Cardíacos/fisiologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Endotelina-1/sangue , Feminino , Humanos , Hipertrofia/etiologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Comunicação Parácrina , Estudos Retrospectivos , Células Tumorais Cultivadas , Remodelação Ventricular
10.
J Mol Med (Berl) ; 98(9): 1269-1278, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725274

RESUMO

The von Hippel-Lindau (VHL) protein binds and degrades hypoxia-inducible factors (HIF) hydroxylated by prolyl-hydroxylases under normoxia. Although originally described as a tumor suppressor, there is growing evidence that VHL may paradoxically promote tumor growth. The significance of its described interactions with many other proteins remains unclear. We found that VHL interacts with p53, preventing its tetramerization, promoter binding and expression of its target genes p21, PUMA, and Bax. VHL limited the decrease in proliferation and increase in apoptosis caused by p53 activation, independent of prolyl-hydroxylation and HIF activity, and its presence in tumors caused a resistance to p53-inducing chemotherapy in vivo. We propose that VHL has both anti-tumor function, via HIF degradation, and a new pro-tumor function via p53 target (p21, PUMA, Bax) inhibition. Because p53 plays a critical role in tumor biology, is activated by many chemotherapies, and because VHL levels vary among different tumors and its function can even be lost by mutations in some tumors, our results have important clinical applications. KEY MESSAGES: VHL and p53 physically interact and VHL inhibits p53 activity by limiting the formation of p53 tetramers. VHL attenuates the expression of p53 target genes in response to p53 stimuli. The inhibition of p53 by VHL is independent of HIF and prolyl-hydroxylation.


Assuntos
Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Humanos , Neoplasias/etiologia , Neoplasias/patologia , Ligação Proteica , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
11.
Sci Transl Med ; 11(478)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728290

RESUMO

Chemotherapy-induced cardiotoxicity (CIC) is a common clinical problem that compromises effective anticancer therapies. Many chemotherapeutics (including anthracyclines, such as doxorubicin) induce the proapoptotic transcription factor p53 in the tumor and nonspecifically in the heart, promoting heart failure. Although inhibition of p53 shows benefit in preclinical heart failure models, it would not be an attractive adjuvant therapy for CIC, because it would prevent tumor regression. A p53-targeting therapy that would decrease chemotherapy-induced apoptosis in the myocardium and, at the same time, enhance apoptosis in the tumor would be ideal. Here, we propose that differences in oxygen tension between the myocardium and the tumor could provide a platform for redox-dependent tissue-specific therapies. We show by coimmunoprecipitation and mass spectrometry that the redox-regulated pyruvate kinase muscle 2 (PKM2) directly binds with p53 and that the redox status of cysteine-423 of tetrameric (but not monomeric) PKM2 is critical for the differential regulation of p53 transcriptional activity. Tetrameric PKM2 suppresses p53 transcriptional activity and apoptosis in a high oxidation state but enhances them in a low oxidation one. We show that the oxidation state (along with cysteine-423 oxidation) is higher in the heart compared to the tumor of the same animal. Treatment with TEPP-46 (a compound that stabilizes tetrameric PKM2) suppressed doxorubicin-induced cardiomyocyte apoptosis, preventing cardiac dysfunction, but enhanced cancer cell apoptosis and tumor regression in the same animals in lung cancer models. Thus, our work suggests that redox-dependent differences in common proteins expressed in the myocardium and tumor can be exploited therapeutically for tissue selectivity in CIC.


Assuntos
Antraciclinas/efeitos adversos , Cardiotoxicidade/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Especificidade de Órgãos , Hormônios Tireóideos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade/patologia , Cardiotoxicidade/fisiopatologia , Linhagem Celular Tumoral , Doxorrubicina/efeitos adversos , Estabilidade Enzimática , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredução , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transcrição Gênica , Proteínas de Ligação a Hormônio da Tireoide
13.
Am J Respir Crit Care Med ; 198(1): 90-103, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394093

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer-like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. OBJECTIVES: We hypothesized that mtHSP90 in PAH-PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. METHODS: Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria-targeted HSP90 inhibitor, was tested in fawn-hooded and monocrotaline rats. MEASUREMENTS AND MAIN RESULTS: We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH-PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH-PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH-PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn-hooded rat). CONCLUSIONS: Our data show for the first time that accumulation of mtHSP90 is a feature of PAH-PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.


Assuntos
Anti-Hipertensivos/uso terapêutico , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Mitocôndrias/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Ratos
14.
Am J Physiol Heart Circ Physiol ; 313(3): H479-H490, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687587

RESUMO

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report here, for the first time, that FoxO1 inhibition increases glucose oxidation in the isolated working mouse heart.


Assuntos
Metabolismo Energético , Proteína Forkhead Box O1/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Angiotensina II/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Dexametasona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Quinolonas/farmacologia , Interferência de RNA , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Transfecção
15.
Eur Urol ; 69(4): 734-744, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26433571

RESUMO

BACKGROUND: Clear-cell renal cell carcinoma (ccRCC) exhibits suppressed mitochondrial function and preferential use of glycolysis even in normoxia, promoting proliferation and suppressing apoptosis. ccRCC resistance to therapy is driven by constitutive hypoxia-inducible factor (HIF) expression due to genetic loss of von Hippel-Lindau factor. In addition to promoting angiogenesis, HIF suppresses mitochondrial function by inducing pyruvate dehydrogenase kinase (PDK), a gatekeeping enzyme for mitochondrial glucose oxidation. OBJECTIVE: To reverse mitochondrial suppression of ccRCC using the PDK inhibitor dichloroacetate (DCA). DESIGN, SETTING, AND PARTICIPANTS: Radical nephrectomy specimens from patients with ccRCC were assessed for PDK expression. The 786-O ccRCC line and two animal models (chicken in ovo and murine xenografts) were used for mechanistic studies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Mitochondrial function, proliferation, apoptosis, HIF transcriptional activity, angiogenesis, and tumor size were measured in vitro and in vivo. Independent-sample t-tests and analysis of variance were used for statistical analyses. RESULTS: PDK was elevated in 786-O cells and in ccRCC compared to normal kidney tissue from the same patient. DCA reactivated mitochondrial function (increased respiration, Krebs cycle metabolites such as α-ketoglutarate [cofactor of factor inhibiting HIF], and mitochondrial reactive oxygen species), increased p53 activity and apoptosis, and decreased proliferation in 786-O cells. DCA reduced HIF transcriptional activity in an FIH-dependent manner, inhibiting angiogenesis in vitro. DCA reduced tumor size and angiogenesis in vivo in both animal models. CONCLUSIONS: DCA can reverse the mitochondrial suppression of ccRCC and decrease HIF transcriptional activity, bypassing its constitutive expression. Its previous clinical use in humans makes it an attractive candidate for translation to ccRCC patients. PATIENT SUMMARY: We show that an energy-boosting drug decreases tumor growth and tumor blood vessels in animals carrying human kidney cancer cells. This generic drug has been used in patients for other conditions and thus could be tested in kidney cancer that remains incurable.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Ácido Dicloroacético/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Renais/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos Nus , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neovascularização Patológica , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 6(40): 42478-90, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26646590

RESUMO

An intriguing biological question relating to cell signaling is how the inflammatory mediator NF-kB and the tumour suppressor protein p53 can be induced by similar triggers, like DNA damage or infection, yet have seemingly opposing or sometimes cooperative biological functions. For example, the NF-κB subunit RelA/p65 has been shown to inhibit apoptosis, whereas p53 induces apoptosis. One potential explanation may be their co-regulation by common cellular factors: inhibitor of Apoptosis Stimulating p53 Protein (iASPP) is one such common regulator of both RelA/p65 and p53. Here we show that iASPP is a novel substrate of caspases in response to apoptotic stimuli. Caspase cleaves the N-terminal region of iASPP at SSLD294 resulting in a prominent 80kDa fragment of iASPP. This caspase cleavage site is conserved in various species from zebrafish to Homo sapiens. The 80kDa fragment of iASPP translocates from the cytoplasm to the nucleus via the RaDAR nuclear import pathway, independent of p53. The 80kDa iASPP fragment can bind and inhibit p53 or RelA/p65 more efficiently than full-length iASPP. Overall, these data reveal a potential novel regulation of p53 and RelA/p65 activities in response to apoptotic stimuli.


Assuntos
Caspases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Linhagem Celular , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Ativação Transcricional , Transfecção
18.
Circ Res ; 116(1): 56-69, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25287062

RESUMO

RATIONALE: Right ventricular (RV) failure is a major cause of morbidity and mortality in pulmonary hypertension, but its mechanism remains unknown. Myocyte enhancer factor 2 (Mef2) has been implicated in RV development, regulating metabolic, contractile, and angiogenic genes. Moreover, Mef2 regulates microRNAs that have emerged as important determinants of cardiac development and disease, but for which the role in RV is still unclear. OBJECTIVE: We hypothesized a critical role of a Mef2-microRNAs axis in RV failure. METHODS AND RESULTS: In a rat pulmonary hypertension model (monocrotaline), we studied RV free wall tissues from rats with normal, compensated, and decompensated RV hypertrophy, carefully defined based on clinically relevant parameters, including RV systolic and end-diastolic pressures, cardiac output, RV size, and morbidity. Mef2c expression was sharply increased in compensating phase of RVH tissues but was lost in decompensation phase of RVH. An unbiased screening of microRNAs in our model resulted to a short microRNA signature of decompensated RV failure, which included the myocardium-specific miR-208, which was progressively downregulated as RV failure progressed, in contrast to what is described in left ventricular failure. With mechanistic in vitro experiments using neonatal and adult RV cardiomyocytes, we showed that miR-208 inhibition, as well as tumor necrosis factor-α, activates the complex mediator of transcription 13/nuclear receptor corepressor 1 axis, which in turn promotes Mef2 inhibition, closing a self-limiting feedback loop, driving the transition from compensating phase of RVH toward decompensation phase of RVH. In our model, serum tumor necrosis factor-α levels progressively increased with time while serum miR-208 levels decreased, mirroring its levels in RV myocardium. CONCLUSIONS: We describe an RV-specific mechanism for heart failure, which could potentially lead to new biomarkers and therapeutic targets.


Assuntos
Insuficiência Cardíaca/metabolismo , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição MEF2/biossíntese , MicroRNAs/biossíntese , Função Ventricular Direita/fisiologia , Animais , Células Cultivadas , Insuficiência Cardíaca/patologia , Hipertensão Pulmonar/patologia , Masculino , Miócitos Cardíacos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
19.
Cell Metab ; 20(5): 827-839, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25284742

RESUMO

Suppression of mitochondrial function promoting proliferation and apoptosis suppression has been described in the pulmonary arteries and extrapulmonary tissues in pulmonary arterial hypertension (PAH), but the cause of this metabolic remodeling is unknown. Mice lacking sirtuin 3 (SIRT3), a mitochondrial deacetylase, have increased acetylation and inhibition of many mitochondrial enzymes and complexes, suppressing mitochondrial function. Sirt3KO mice develop spontaneous PAH, exhibiting previously described molecular features of PAH pulmonary artery smooth muscle cells (PASMC). In human PAH PASMC and rats with PAH, SIRT3 is downregulated, and its normalization with adenovirus gene therapy reverses the disease phenotype. A loss-of-function SIRT3 polymorphism, linked to metabolic syndrome, is associated with PAH in an unbiased cohort of 162 patients and controls. If confirmed in large patient cohorts, these findings may facilitate biomarker and therapeutic discovery programs in PAH.


Assuntos
Regulação para Baixo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Mitocôndrias/patologia , Artéria Pulmonar/patologia , Sirtuína 3/genética , Adulto , Animais , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/terapia , Feminino , Terapia Genética , Humanos , Hipertensão Pulmonar/terapia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Polimorfismo Genético , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Cell ; 158(1): 84-97, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995980

RESUMO

DNA transcription, replication, and repair are regulated by histone acetylation, a process that requires the generation of acetyl-coenzyme A (CoA). Here, we show that all the subunits of the mitochondrial pyruvate dehydrogenase complex (PDC) are also present and functional in the nucleus of mammalian cells. We found that knockdown of nuclear PDC in isolated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of core histones. Nuclear PDC levels increased in a cell-cycle-dependent manner and in response to serum, epidermal growth factor, or mitochondrial stress; this was accompanied by a corresponding decrease in mitochondrial PDC levels, suggesting a translocation from the mitochondria to the nucleus. Inhibition of nuclear PDC decreased acetylation of specific lysine residues on histones important for G1-S phase progression and expression of S phase markers. Dynamic translocation of mitochondrial PDC to the nucleus provides a pathway for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regulation.


Assuntos
Acetilcoenzima A/biossíntese , Núcleo Celular/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Epigênese Genética , Histonas/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA