Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38264934

RESUMO

Cell polarization requires asymmetric localization of numerous mRNAs, proteins and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors. In the dynein-dynactin-Bicaudal-D transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here, we focus on the role of Drosophila BicD-related (BicDR, CG32137) in the development of the long bristles. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft. BicD and BicDR also support the stable expression and distribution of Rab6 and Spn-F in the bristle shaft, including the distal tip localization of Spn-F, pointing to the role of microtubule-dependent vesicle trafficking for bristle construction. BicDR supports the function of BicD, and we discuss the hypothesis whereby BicDR might transport cargo more locally, with BicD transporting cargo over long distances, such as to the distal tip. We also identified embryonic proteins that interact with BicDR and appear to be BicDR cargo. For one of them, EF1γ (also known as eEF1γ), we show that the encoding gene EF1γ interacts with BicD and BicDR in the construction of the bristles.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
2.
PLoS Genet ; 18(4): e1010185, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486661

RESUMO

The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling.


Assuntos
Fenilalanina-tRNA Ligase , Animais , Drosophila/genética , Fenilalanina , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo
3.
Dis Model Mech ; 14(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33547043

RESUMO

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) not only load the appropriate amino acid onto their cognate tRNAs, but many of them also perform additional functions that are not necessarily related to their canonical activities. Phenylalanyl tRNA synthetase (PheRS/FARS) levels are elevated in multiple cancers compared to their normal cell counterparts. Our results show that downregulation of PheRS, or only its α-PheRS subunit, reduces organ size, whereas elevated expression of the α-PheRS subunit stimulates cell growth and proliferation. In the wing disc system, this can lead to a 67% increase in cells that stain for a mitotic marker. Clonal analysis of twin spots in the follicle cells of the ovary revealed that elevated expression of the α-PheRS subunit causes cells to grow and proliferate ∼25% faster than their normal twin cells. This faster growth and proliferation did not affect the size distribution of the proliferating cells. Importantly, this stimulation proliferation turned out to be independent of the ß-PheRS subunit and the aminoacylation activity, and it did not visibly stimulate translation.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Fenilalanina-tRNA Ligase/metabolismo , Biossíntese de Proteínas , Aminoácidos/metabolismo , Aminoacilação , Animais , Proliferação de Células , Técnicas de Silenciamento de Genes , Mitose , Tamanho do Órgão , Organogênese
5.
J Cell Sci ; 131(1)2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29222110

RESUMO

Casein kinase 1 (CK1) plays central roles in various signal transduction pathways and performs many cellular activities. For many years CK1 was thought to act independently of modulatory subunits and in a constitutive manner. Recently, DEAD box RNA helicases, in particular DEAD box RNA helicase 3 X-linked (DDX3X), were found to stimulate CK1 activity in vitro In order to observe CK1 activity in living cells and to study its interaction with DDX3X, we developed a CK1-specific FRET biosensor. This tool revealed that DDX3X is indeed required for full CK1 activity in living cells. Two counteracting mechanisms control the activity of these enzymes. Phosphorylation by CK1 impairs the ATPase activity of DDX3X and RNA destabilizes the DDX3X-CK1 complex. We identified possible sites of interaction between DDX3X and CK1. While mutations identified in the DDX3X genes of human medulloblastoma patients can enhance CK1 activity in living cells, the mechanism of CK1 activation by DDX3X points to a possible therapeutic approach in CK1-related diseases such as those caused by tumors driven by aberrant Wnt/ß-catenin and Sonic hedgehog (SHH) activation. Indeed, CK1 peptides can reduce CK1 activity.


Assuntos
Técnicas Biossensoriais , Caseína Quinase I/metabolismo , RNA Helicases DEAD-box/metabolismo , Meduloblastoma/genética , RNA Helicases/metabolismo , Via de Sinalização Wnt , Neoplasias Cerebelares/genética , RNA Helicases DEAD-box/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Mutação , Fosforilação , RNA Helicases/genética
7.
Dev Biol ; 411(2): 217-230, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851213

RESUMO

The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion--despite disruption of the Acf1 reading frame--expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Nucleossomos/metabolismo , Oogênese , Fatores de Transcrição/fisiologia , Alelos , Animais , Apoptose , Montagem e Desmontagem da Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Masculino , Oócitos/citologia , Oócitos/metabolismo , Ovário/metabolismo , Fenótipo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Células-Tronco/citologia
8.
Dis Model Mech ; 8(1): 81-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25431422

RESUMO

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.


Assuntos
Neoplasias/metabolismo , Xeroderma Pigmentoso/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Ciclo Celular , Cromatina/metabolismo , Clonagem Molecular , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Neurônios/patologia , Fenótipo , Fatores de Risco , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIH/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
9.
J Cell Biol ; 202(3): 479-94, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23918939

RESUMO

Microtubule-based transport mediates the sorting and dispersal of many cellular components and pathogens. However, the mechanisms by which motor complexes are recruited to and regulated on different cargos remain poorly understood. Here we describe a large-scale biochemical screen for novel factors associated with RNA localization signals mediating minus end-directed mRNA transport during Drosophila development. We identified the protein Lissencephaly-1 (Lis1) and found that minus-end travel distances of localizing transcripts are dramatically reduced in lis1 mutant embryos. Surprisingly, given its well-documented role in regulating dynein mechanochemistry, we uncovered an important requirement for Lis1 in promoting the recruitment of dynein and its accessory complex dynactin to RNA localization complexes. Furthermore, we provide evidence that Lis1 levels regulate the overall association of dynein with dynactin. Our data therefore reveal a critical role for Lis1 within the mRNA localization machinery and suggest a model in which Lis1 facilitates motor complex association with cargos by promoting the interaction of dynein with dynactin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Animais , Complexo Dinactina , Transporte Proteico , Transporte de RNA
10.
Cell Div ; 5: 24, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20840796

RESUMO

Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer.The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

11.
PLoS Genet ; 6(3): e1000876, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20300654

RESUMO

The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER)-independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK) to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Mitose , Fuso Acromático/metabolismo , Alelos , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/patologia , Instabilidade Cromossômica , Cromossomos/metabolismo , Ciclina B/metabolismo , DNA Helicases , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Genes Essenciais , Transporte Proteico , Frações Subcelulares/enzimologia , Quinase Ativadora de Quinase Dependente de Ciclina
12.
Mech Dev ; 122(1): 97-108, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15582780

RESUMO

Nuclear translocation, driven by the motility apparatus consisting of the cytoplasmic dynein motor and microtubules, is essential for cell migration during embryonic development. Bicaudal-D (Bic-D), an evolutionarily conserved dynein-interacting protein, is required for developmental control of nuclear migration in Drosophila. Nothing is known about the signaling events that coordinate the function of Bic-D and dynein during development. Here, we show that Misshapen (Msn), the fly homolog of the vertebrate Nck-interacting kinase is a component of a novel signaling pathway that regulates photoreceptor (R-cell) nuclear migration in the developing Drosophila compound eye. Msn, like Bic-D, is required for the apical migration of differentiating R-cell precursor nuclei. msn displays strong genetic interaction with Bic-D. Biochemical studies demonstrate that Msn increases the phosphorylation of Bic-D, which appears to be necessary for the apical accumulation of both Bic-D and dynein in developing R-cell precursor cells. We propose that Msn functions together with Bic-D to regulate the apical localization of dynein in generating directed nuclear migration within differentiating R-cell precursor cells.


Assuntos
Movimento Celular/genética , Proteínas de Drosophila/genética , Drosophila/genética , Dineínas/genética , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Animais , Núcleo Celular , Drosophila/anatomia & histologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Fosforilação , Células Fotorreceptoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
13.
Genome ; 47(5): 832-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15499397

RESUMO

Chromosomal mutations induced by ethyl methanesulfonate (EMS) treatment can cause female sterility or maternal-effect lethality in Drosophila. EMS is particularly useful to researchers because it creates mutations independent of position effects. However, because researchers have little control over the chromosomal site of mutation, post-mutagenic genetic mapping is required to determine the cytological location of the mutation. To make a valuable set of mutants more useful to the research community, we have mapped the uncharacterized part of the female-sterile - maternal-effect lethal Tubingen collection. We mapped 49 female-sterile - maternal-effect lethal alleles and 72 lethal alleles to individual deficiency intervals on the third chromosome. In addition, we analyzed the phenotype of ovaries resulting from female sterile mutations. The observed phenotypes range from tumorous ovaries and early blocks in oogenesis, to later blocks, slow growth, blocks in stage 10, to apparently full development of the ovary. The mapping and phenotypic characterization of these 121 mutations provide the necessary information for the researcher to consider a specific mutant as a candidate for their gene of interest.


Assuntos
Cromossomos/genética , Genes Letais/genética , Infertilidade Feminina/genética , Mutação/genética , Fenótipo , Alelos , Animais , Mapeamento Cromossômico/métodos , Cromossomos/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Metanossulfonato de Etila/toxicidade , Feminino , Genes de Insetos/efeitos dos fármacos , Genes de Insetos/genética , Genes Letais/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Mutação/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/genética , Oogênese/fisiologia , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/patologia
14.
Cell Cycle ; 2(6): 503-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14504460

RESUMO

Xpd, one of nine polypeptide subunits of the general transcription factor TFIIH plays an organizing role in TFIIH assembly. This structural function in protein complex assembly appears to be used by cells in a dynamic way to regulate and co-ordinate the diverse cellular functions of the different sub-complexes in transcription, DNA repair and cell cycle progression.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição , Reparo do DNA , Humanos , Substâncias Macromoleculares , Mitose/fisiologia , Mutação , Subunidades Proteicas/química , Proteínas/química , Proteínas/genética , Fator de Transcrição TFIIH , Fatores de Transcrição TFII/química , Transcrição Gênica , Proteína Grupo D do Xeroderma Pigmentoso
15.
Genetics ; 163(3): 973-82, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12663536

RESUMO

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.


Assuntos
Dano ao DNA , Replicação do DNA/genética , Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Quinase do Ponto de Checagem 2 , Mapeamento Cromossômico , Drosophila/classificação , Drosophila/efeitos dos fármacos , Drosophila/embriologia , Proteínas de Drosophila/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Fase G2/genética , Genótipo , Hidroxiureia/farmacologia , Meiose/genética , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Proteínas Nucleares/genética , Filogenia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Fase S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA