Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 12(3): 711-722, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26592962

RESUMO

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. FROM THE CLINICAL EDITOR: The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design.


Assuntos
Antígenos/genética , Polietilenoimina/química , RNA/administração & dosagem , RNA/genética , Replicon , Vacinas/administração & dosagem , Vacinas/genética , Animais , Antígenos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , RNA/imunologia , RNA/farmacocinética , Suínos , Vacinas/imunologia , Vacinas/farmacocinética
2.
J Virol ; 87(21): 11693-703, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966411

RESUMO

Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.


Assuntos
Vírus do Sarampo/fisiologia , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Vírus do Sarampo/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Deleção de Sequência , Proteínas Virais/genética
3.
Vaccine ; 29(7): 1491-503, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21184857

RESUMO

Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/ß) to immune defence development, we generated IFN-α/ß-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/ß. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/ß-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/ß-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos , Linhagem Celular , Peste Suína Clássica/imunologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interferon-alfa/genética , Interferon beta/genética , RNA Viral/biossíntese , RNA Viral/sangue , Replicon , Suínos , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA