Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L786-L793, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877227

RESUMO

Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Músculo Liso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tensoativos/metabolismo , Animais , Hiper-Reatividade Brônquica/metabolismo , Camundongos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L215-L223, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982738

RESUMO

Progranulin (PGRN) is a growth factor with multiple biological functions and has been suggested as an endogenous inhibitor of Tumor necrosis factor-α (TNF-α)-mediated signaling. TNF-α is believed to be one of the important mediators of the pathogenesis of asthma, including airway hyperresponsiveness (AHR). In the present study, effects of recombinant PGRN on TNF-α-mediated signaling and antigen-induced hypercontractility were examined in bronchial smooth muscles (BSMs) both in vitro and in vivo. Cultured human BSM cells (hBSMCs) and male BALB/c mice were used. The mice were sensitized and repeatedly challenged with ovalbumin antigen. Animals also received intranasal administrations of recombinant PGRN into the airways 1 h before each antigen inhalation. In hBSMCs, PGRN inhibited both the degradation of IκB-α (an index of NF-κB activation) and the upregulation of RhoA (a contractile machinery-associated protein that contributes to the BSM hyperresponsiveness) induced by TNF-α, indicating that PGRN has an ability to inhibit TNF-α-mediated signaling also in the BSM cells. In BSMs of the repeatedly antigen-challenged mice, an augmented contractile responsiveness to acetylcholine with an upregulation of RhoA was observed: both the events were ameliorated by pretreatments with PGRN intranasally. Interestingly, a significant decrease in PGRN expression was found in the airways of the repeatedly antigen-challenged mice rather than those of control animals. In conclusion, exogenously applied PGRN into the airways ameliorated the antigen-induced BSM hyperresponsiveness, probably by blocking TNF-α-mediated response. Increasing PGRN levels might be a promising therapeutic for AHR in allergic asthma.


Assuntos
Asma/fisiopatologia , Brônquios/fisiopatologia , Hiper-Reatividade Brônquica/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Músculo Liso/patologia , Proteínas Recombinantes/administração & dosagem , Hipersensibilidade Respiratória/prevenção & controle , Administração Intranasal , Animais , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Células Cultivadas , Granulinas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Progranulinas , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Transdução de Sinais
3.
J Smooth Muscle Res ; 53(0): 37-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484126

RESUMO

Airway hyperresponsiveness (AHR) and inflammation are key pathophysiological features of asthma. Enhanced contraction of bronchial smooth muscle (BSM) is one of the causes of the AHR. It is thus important for development of asthma therapy to understand the change in the contractile signaling of airway smooth muscle cells associated with the AHR. In addition to the Ca2+-mediated phosphorylation of myosin light chain (MLC), contractile agonists also enhance MLC phosphorylation level, Ca2+-independently, by inactivating MLC phosphatase (MLCP), called Ca2+ sensitization of contraction, in smooth muscle cells including airways. To date, involvements of RhoA/ROCKs and PKC/Ppp1r14a (also called as CPI-17) pathways in the Ca2+ sensitization have been identified. Our previous studies revealed that the agonist-induced Ca2+ sensitization of contraction is markedly augmented in BSMs of animal models of allergen-induced AHR. In BSMs of these animal models, the expression of RhoA and CPI-17 proteins were significantly increased, indicating that both the Ca2+ sensitizing pathways are augmented. Interestingly, incubation of BSM cells with asthma-associated cytokines, such as interleukin-13 (IL-13), IL-17, and tumor necrosis factor-α (TNF-α), caused up-regulations of RhoA and CPI-17 in BSM cells of naive animals and cultured human BSM cells. In addition to the transcription factors such as STAT6 and NF-κB activated by these inflammatory cytokines, an involvement of down-regulation of miR-133a, a microRNA that negatively regulates RhoA translation, has also been suggested in the IL-13- and IL-17-induced up-regulation of RhoA. Thus, the Ca2+ sensitizing pathways and the cytokine-mediated signaling including microRNAs in BSMs might be potential targets for treatment of allergic asthma, especially the AHR.


Assuntos
Asma/etiologia , Asma/fisiopatologia , Brônquios/fisiopatologia , Contração Muscular , Músculo Liso/fisiopatologia , Hipersensibilidade Respiratória/etiologia , Animais , Asma/terapia , Cálcio/metabolismo , Células Cultivadas , Citocinas/fisiologia , Humanos , Mediadores da Inflamação/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs , Terapia de Alvo Molecular , Proteínas Musculares , Cadeias Leves de Miosina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Hipersensibilidade Respiratória/terapia , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/fisiologia
4.
Biol Pharm Bull ; 39(11): 1809-1814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803452

RESUMO

Approximately 30% of patients with cancer pain experience concurrent neuropathic pain. Since these patients are not sufficiently responsive to morphine, the development of an effective method of pain relief is urgently needed. Decreased function of the µ opioid receptor, which binds to the active metabolite of morphine M-6-G in the brain, has been proposed as a mechanism for morphine resistance. Previously, we pharmacokinetically examined morphine resistance in mice with neuropathic pain, and demonstrated that the brain morphine concentration was decreased, expression level of P-glycoprotein (P-gp) in the small intestine was increased, and expression level and activity of uridine diphosphate glucuronosyltransferase (UGT)2B in the liver were increased. In order to clarify the mechanism of the increased expression of UGT2B, we examined the phase of neuropathic pain during which UGT2B expression in the liver begins to increase, and whether this increased expression is nuclear receptor-mediated. The results of this study revealed that the increased expression of UGT2B in the liver occurred during the maintenance phase of neuropathic pain, suggesting that it may be caused by transcriptional regulation which was not accompanied by increased nuclear import of pregnane X receptor (PXR).


Assuntos
Glucuronosiltransferase/genética , Fígado/metabolismo , Neuralgia/genética , Animais , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/genética , Temperatura Alta , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos ICR , Receptor de Pregnano X , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Nervo Isquiático/lesões
5.
Eur J Pharm Sci ; 92: 298-304, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27102159

RESUMO

The chronic administration of morphine to patients with neuropathic pain results in the development of a gradual tolerance to morphine. Although the detailed mechanism of this effect has not yet been elucidated, one of the known causes is a decrease in µ-opioid receptor function with regard to the active metabolite of morphine, M-6-G(morphine-6-glucuronide), in the ventrotegmental area of the midbrain. In this study, the relationship between the concentration of morphine in the brain and its analgesic effect was examined after the administration of morphine in the presence of neuropathic pain. Morphine was orally administered to mice with neuropathic pain, and the relationship between morphine's analgesic effect and its concentration in the brain was analysed. In addition, the expression levels of the conjugation enzyme, UGT2B (uridine diphosphate glucuronosyltransferase), which has morphine as its substrate, and P-gp, which is a transporter involved in morphine excretion, were examined. In mice with neuropathic pain, the concentration of morphine in the brain was significantly decreased, and a correlation was found between this decrease and the decrease in the analgesic effect. It was considered possible that this decrease in the brain morphine concentration may be due to an increase in the expression level of P-gp in the small intestine and to an increase in the expression level and binding activity of UGT2B in the liver. The results of this study suggest the possibility that a sufficient analgesic effect may not be obtained when morphine is administered in the presence of neuropathic pain due to a decrease in the total amount of morphine and M-6-G that reach the brain.


Assuntos
Analgésicos Opioides/farmacocinética , Encéfalo/metabolismo , Tolerância a Medicamentos , Morfina/farmacocinética , Neuralgia/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Analgésicos Opioides/sangue , Analgésicos Opioides/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Glucuronosiltransferase/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos ICR , Morfina/sangue , Morfina/uso terapêutico , Derivados da Morfina/metabolismo , Neuralgia/tratamento farmacológico , Nervo Isquiático/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA