Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genes Cells ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715205

RESUMO

Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.

2.
J Med Case Rep ; 17(1): 257, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340320

RESUMO

BACKGROUND: Denosumab therapy is often used to reduce skeletal-related events in metastatic bone disease. On the other hand, there have been some instances of atypical femoral fracture in patients with metastatic bone disease treated with denosumab. In this case report, we describe a patient with metastatic bone disease due to breast cancer who had been using denosumab for 4 years to prevent skeletal-related events and suffered an atypical tibial fracture. CASE PRESENTATION: We report here the case of an 82-year-old Japanese woman who had received yearly intravenous denosumab for 4 years and presented with a fracture fulfilling the criteria for an atypical fracture, except for being located at the tibial diaphysis. She was found to have stage 4 breast cancer with multiple bone metastases 4 years prior. She had difficulty walking due to her tibial pain and underwent surgical treatment. Four months after surgery, the tibial fracture site exhibited bone fusion. CONCLUSION: In patients with long-term use of denosumab to prevent skeletal-related events in metastatic bone disease, it is important to be aware of shin and thigh pain and to examine for signs of atypical tibial fractures to pay attention to atypical femoral fractures.


Assuntos
Conservadores da Densidade Óssea , Neoplasias Ósseas , Neoplasias da Mama , Fraturas do Fêmur , Fraturas da Tíbia , Feminino , Humanos , Idoso de 80 Anos ou mais , Denosumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Conservadores da Densidade Óssea/uso terapêutico , Fraturas do Fêmur/induzido quimicamente , Fraturas do Fêmur/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Fraturas da Tíbia/diagnóstico por imagem , Dor
3.
Cell Biosci ; 12(1): 92, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715826

RESUMO

RNA is spliced concomitantly with transcription and the process is organized by RNA splicing factors, transcriptional regulators, and chromatin regulators. RNA is spliced in close proximity to transcription machinery. Hence, some RNA splicing factors may play a role in transcription. Here, we show that the splicing factor SF3B2 binds to gene regulatory elements and mRNA to modulate transcription and RNA stability in head and neck squamous cell carcinoma cells. High SF3B2 expression leads to poor prognosis in patients with head and neck squamous cell carcinoma and to progression of tumor growth in mice. SF3B2 promotes tumor growth, owing to its involvement in activation of gene expression associated with mitochondrial electron transport and transcription regulatory region DNA binding. SF3B2 is enriched around the promoter element on chromatin and the transcription termination site on RNA. SF3B2 is involved in the regulation of RNA stability. According to the SF3B2-binding profile, SF3B2 regulates RNA polymerase II activity, in addition to regulating RNA splicing. Mechanistically, SF3B2 promotes the binding of structural maintenance of chromosomes 1A and CCCTC-binding factor (CTCF) to the SF3B2-binding genomic regions. SF3B2 also modulates CTCF transcriptional activity. Our findings indicate that SF3B2 has a dual function in both transcription and RNA stability, leading to head and neck squamous cell carcinoma progression.

4.
Inflamm Regen ; 40: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072227

RESUMO

BACKGROUND: Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. METHODS: IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. RESULTS: We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. CONCLUSION: The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.

5.
J Cereb Blood Flow Metab ; 40(9): 1739-1751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32423328

RESUMO

Advances in stem cell technology have provided three approaches to address the demanding issue of the treatment of intractable neurological disease. One of the approaches is the screening of compounds attenuating pathological phenotypes in stem-cell based models. A second approach consists of exogenous-targeted cell supplementation to the lesion with stem cell-derived differentiated cells. A third approach involves in vivo direct programming to transdifferentiate endogenous somatic cells and to boost CNS tissue remodeling. In this review, we outline research advances in stem cell technology of direct reprogramming in vitro and in vivo and discuss the future challenge of tissue remodeling by neural transdifferentiation.


Assuntos
Transdiferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco
6.
Cell Rep ; 31(1): 107407, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268103

RESUMO

Epithelial cells establish apicobasal polarity by forming tight junctions (TJs) at the apical-lateral boundary, which play fundamental roles in physiological functions. An evolutionarily conserved atypical protein kinase C (aPKC)-partitioning defective (PAR) complex functions as a platform for TJ assembly during cell polarity establishment. However, how this complex converts the spatial cues into a subsequent active unit is unclear. Here, we identify an epithelial isoform of Shank2 as a mediator of the aPKC-PAR complex. Shank2 binds to and colocalizes with aPKC at apical junctional regions of polarized epithelial cells. Shank2 knockdown results in defects in TJ formation. Mechanistically, we find that the N-terminal SPN domain is required for the junctional localization of Shank2 and binds to the active form of Rap1 small GTPase, which is involved in TJ formation. Our findings suggest that a close physical and functional relationship between aPKC and Shank2-active Rap1 signaling serves as the platform for TJ assembly to regulate epithelial cell polarity.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Polaridade Celular/fisiologia , Cães , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Masculino , Camundongos , Complexo Shelterina , Transdução de Sinais/fisiologia , Junções Íntimas/metabolismo
7.
Nat Commun ; 11(1): 1063, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102997

RESUMO

Mediator is a coregulatory complex that regulates transcription of Pol II-dependent genes. Previously, we showed that human Mediator subunit MED26 plays a role in the recruitment of Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to regulate the expression of certain genes. MED26 plays a role in recruiting SEC to protein-coding genes including c-myc and LEC to small nuclear RNA (snRNA) genes. However, how MED26 engages SEC or LEC to regulate distinct genes is unclear. Here, we provide evidence that MED26 recruits LEC to modulate transcription termination of non-polyadenylated transcripts including snRNAs and mRNAs encoding replication-dependent histone (RDH) at Cajal bodies. Our findings indicate that LEC recruited by MED26 promotes efficient transcription termination by Pol II through interaction with CBC-ARS2 and NELF/DSIF, and promotes 3' end processing by enhancing recruitment of Integrator or Heat Labile Factor to snRNA or RDH genes, respectively.


Assuntos
Regulação da Expressão Gênica/genética , Complexo Mediador/genética , RNA Nuclear Pequeno/genética , Terminação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
8.
Am J Hum Genet ; 106(1): 13-25, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31839203

RESUMO

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.


Assuntos
Encefalopatias/etiologia , Anormalidades Craniofaciais/etiologia , Mutação com Ganho de Função , Regulação da Expressão Gênica , Deleção de Sequência , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Encefalopatias/patologia , Proliferação de Células , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Células HeLa , Humanos , Masculino , Proteólise , Síndrome , Transativadores/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/metabolismo
9.
Brain Nerve ; 69(12): 1442-1446, 2017 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-29282348

RESUMO

A 24-year-old woman slowly developed mild unsteadiness of gait. Neurological examination revealed mild dysmetria of the left upper and lower limbs. Standing and gait were unsteady, and tandem gait was impossible. Cranial magnetic resonance imaging (MRI) showed an enlarged left cerebellar hemisphere with striated lines, a characteristic finding of Lhermitte-Duclos disease. She also had papules on the forehead, goiter, lactating adenoma, glycogenic acanthosis in the esophagus, café-au-lait spot, and hemangioma and keratosis on the dorsum of foot. The diagnosis of Cowden syndrome was established by finding the mutation in the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene. Cowden syndrome is an autosomal dominant disorder characterized by multiple hamartomas in a variety of tissues. Recognition of Lhermitte-Duclos disease as a neurological condition of Cowden syndrome is important, and once the diagnosis of Lhermitte-Duclos disease is made, a close physical investigation is necessary because the hamartomas tend to develop malignancies. (Received March 15, 2017; Accepted July 24, 2017; Published December 1, 2017).


Assuntos
Síndrome do Hamartoma Múltiplo/complicações , Feminino , Transtornos Neurológicos da Marcha/etiologia , Síndrome do Hamartoma Múltiplo/diagnóstico por imagem , Síndrome do Hamartoma Múltiplo/terapia , Humanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia Computadorizada por Raios X , Adulto Jovem
10.
J Biol Chem ; 292(8): 3201-3212, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28082682

RESUMO

Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.


Assuntos
Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Células HCT116 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/análise , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/análise , Proteína Supressora de Tumor p53/análise , Ubiquitinação
11.
Rinsho Shinkeigaku ; 56(3): 196-9, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-26960269

RESUMO

We here report a 39-year-old woman of short stature with sensorineural deafness, who suddenly developed status epilepticus. T2-weighed image of brain magnetic resonance imaging (MRI) revealed a high signal lesion in the left temporal area, the distribution of which was not compatible with any particular arterial supply. Lactate and pyruvate were elevated in the serum and cerebrospinal fluid. As the mitochondrial gene analysis revealed the m.3243A>G mutation, diagnosis of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode (MELAS) was made. In the histochemical study of a biopsied muscle, the intramuscular blood vessels reacted strongly with SDH (SSV), but the SSV was negative for cytochrome c oxidase (COX), the findings characteristic of myoclonic epilepsy with ragged-red fibers (MERRF). This is the first case of MELAS in which the muscle histochemistry showed positive SSV unassociated with increased COX.


Assuntos
Síndrome MELAS/diagnóstico , Síndrome MERRF/diagnóstico , Adulto , Biópsia , Feminino , Humanos , Síndrome MELAS/patologia , Síndrome MERRF/patologia , Imageamento por Ressonância Magnética
12.
PLoS One ; 9(3): e90190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594805

RESUMO

TBP-like protein (TLP) is involved in transcriptional activation of an upstream promoter of the human p21 gene. TLP binds to p53 and facilitates p53-activated transcription from the upstream promoter. In this study, we clarified that in vitro affinity between TLP and p53 is about one-third of that between TBP and p53. Extensive mutation analyses revealed that the TLP-stimulated function resides in transcription activating domain 1 (TAD1) in the N-terminus of p53. Among the mutants, #22.23, which has two amino acid substitutions in TAD1, exhibited a typical mutant phenotype. Moreover, #22.23 exhibited the strongest mutant phenotype for TLP-binding ability. It is thus thought that TLP-stimulated and p53-dependent transcriptional activation is involved in TAD1 binding of TLP. #22.23 had a decreased transcriptional activation function, especially for the upstream promoter of the endogenous p21 gene, compared with wild-type p53. This mutant did not facilitate p53-dependent growth repression and etoposide-mediated cell-death as wild-type p53 does. Moreover, mutation analysis revealed that middle part of TLP, which is requited for p53 binding, is involved in TLP-stimulated and p53-dependent promoter activation and cell growth repression. These results suggest that activation of the p21 upstream promoter is mediated by interaction between specific regions of TLP and p53.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regiões Promotoras Genéticas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Mutação , Ligação Proteica , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteína Supressora de Tumor p53/química
13.
J Biol Chem ; 287(24): 19792-803, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22511763

RESUMO

TATA-binding protein-like protein (TLP) is involved in development, checkpoint, and apoptosis through potentiation of gene expression. TLP-overexpressing human cells, especially p53-containing cells, exhibited a decreased growth rate and increased proportion of G(1) phase cells. TLP stimulated expression of several growth-related genes including p21 (p21(Waf1/Cip1)). TLP-mediated activation of the p21 upstream promoter in cells was shown by a promoter-luciferase reporter assay. The p53-binding sequence located in the p21 upstream promoter and p53 itself are required for TLP-mediated transcriptional activation. TLP and p53 bound to each other and synergistically enhanced activity of the upstream promoter. TLP specifically activated transcription from the endogenous upstream promoter, and p53 was required for this activation. Etoposide treatment also resulted in activation of the upstream promoter as well as nuclear accumulation of TLP and p53. Moreover, the upstream promoter was associated with endogenous p53 and TLP, and the p53 recruitment was enhanced by TLP. The results of the present study suggest that TLP mediates p53-governed transcriptional activation of the p21 upstream promoter.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Elementos de Resposta/fisiologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Células COS , Chlorocebus aethiops , Inibidor de Quinase Dependente de Ciclina p21/genética , Etoposídeo/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Células HeLa , Células Hep G2 , Humanos , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA