Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38576411

RESUMO

CONTEXT: Telomerase reverse transcriptase promoter (TERT-p) mutations, which upregulate TERT expression, are strongly associated with tumor aggressiveness and worse prognosis in papillary thyroid carcinomas (PTCs). TERT expression is also observed in a proportion of PTCs without TERT-p mutations, but such tumors show less aggressiveness and better prognosis compared with TERT-p mutation-positive tumors. OBJECTIVE: TERT has multiple splicing variants whose relationships with the TERT-p status and clinicopathological characteristics remain poorly understood. We examined the relationship between the TERT-p mutational status, the TERT splicing pattern, and clinicopathological features. METHODS: We investigated the expression of two major variants, α deletion (dA) and ß deletion (dB), in a series of 207 PTCs operated between November 2001 and March 2020 in Nagasaki University Hospital and Kuma Hospital. RESULTS: The TERT-p mutations were found in 33 cases, and among 174 mutation-negative cases, 24 showed TERT expression. All cases were classified into three groups: the TERT-p mutation-negative/expression-negative group (mut-/exp-), the TERT-p mutation-negative/expression-positive group (mut-/exp+), and the TERT-p mutation-positive group (mut+/exp+). The +A + B/dB ratio in mut+/exp + was significantly higher than that in mut-/exp + PTCs. Analysis with clinicopathological data revealed that +A + B expression was associated with higher PTC aggressiveness, whereas dB expression counteracted this effect. Functional in vitro study demonstrated that dB strongly inhibited cell growth, migration, and clonogenicity, suggesting its tumor suppressive role. CONCLUSION: These results provide evidence that the TERT-p mutations alter the expression of different TERT splice variants, which, in turn, associates with different tumor aggressiveness.

2.
Int J Cancer ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688826

RESUMO

Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.

3.
NPJ Aging ; 9(1): 26, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935713

RESUMO

Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53+/- C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.

4.
Radiat Res ; 200(6): 538-547, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902247

RESUMO

Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation. Activation of the p53-dependent DNA damage response caused sustained dephosphorylation of RB proteins and consequent cell cycle arrest, concurrently with Ulk1 dephosphorylation at Ser638 by PPM1D, which promoted autophagy induction 1-2 days after irradiation. In addition, mitochondrial fragmentation became obvious 1-2 days after irradiation, and autophagy was further enhanced. However, Ulk1 levels decreased significantly after 2 days, resulting in lower LC3-II levels. An autophagic flux assay using chloroquine (CQ) also revealed that the flux in irradiated cells gradually decreased over 30 days. In contrast, lysosomal augmentation started at 1 day, became significantly upregulated after 5 days, and continued for over 30 days. After a rapid decrease in autophagy, p16 expression increased and senescence was established, but autophagic activity remained reduced. These results demonstrated that X-ray irradiation triggered two processes, autophagy and senescence, with the former being temporary and regulated by DNA damage response and mitophagy, and the latter being sustained and regulated by persistent cell cycle arrest. The interplay between autophagy and senescence seems to be essential for the proper implementation of the cellular response to radiation exposure.


Assuntos
Autofagia , Exposição à Radiação , Humanos , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Senescência Celular/genética
5.
J Radiat Res ; 64(2): 210-227, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36773323

RESUMO

While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.


Assuntos
Glândulas Mamárias Humanas , Neoplasias Induzidas por Radiação , Exposição à Radiação , Animais , Humanos , Relação Dose-Resposta à Radiação , Neoplasias Induzidas por Radiação/etiologia , Medição de Risco/métodos , Exposição à Radiação/efeitos adversos , Carcinogênese , Modelos Animais , Trato Gastrointestinal
6.
J Radiat Res ; 64(2): 228-249, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36773331

RESUMO

While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.


Assuntos
Sistema Hematopoético , Neoplasias Induzidas por Radiação , Exposição à Radiação , Animais , Humanos , Doses de Radiação , Medição de Risco/métodos , Exposição à Radiação/efeitos adversos , Modelos Animais , Fígado , Pulmão , Relação Dose-Resposta à Radiação
7.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831453

RESUMO

Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.

8.
Adv Radiat Oncol ; 8(3): 101159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793509

RESUMO

Purpose: Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials: This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results: The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions: Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.

9.
Radiat Res ; 199(1): 74-82, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442049

RESUMO

Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.


Assuntos
Radioisótopos de Césio , Proteína C , Humanos , Proteína C/genética , Centrômero , Imunofluorescência , Doses de Radiação , Aberrações Cromossômicas
10.
Radiat Res ; 199(1): 83-88, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143221

RESUMO

The hypoxanthine-phosphoribosyltransferase (HPRT) mutation assay has been widely used to investigate gene mutations induced by radiation. Here, we developed a novel method detecting deletions of multiple exons of the HPRT gene based on real-time quantitative PCR (qPCR). Immortalized normal human fibroblasts (BJ1-hTERT) were irradiated at various doses with γ rays, subjected to the 6-thioguanine (6-TG) selection, and more than one hundred 6-TG-resistant (6-TGR) clones were isolated. High-molecular-weight genomic DNA was extracted, and real-time qPCR was performed with the nine exon-specific primers. Optimization of the primer concentration, appropriate selection of PCR enzyme and refinement of the reaction profiles enabled simultaneous quantitative amplification of each exon. We were able to identify 6-TGR clones with total deletions, which did not show any amplification of the nine exons, and partial deletion mutants, in which one or some of the nine exons were missing, within a few days. This novel technique allows systematic determination of multiple deletions of the HPRT exons induced by ionizing radiation, enabling high-throughput and robust analysis of multiple HPRT mutants.


Assuntos
DNA , Hipoxantina Fosforribosiltransferase , Humanos , Hipoxantina Fosforribosiltransferase/genética , Éxons/genética , Mutação , DNA/genética , Reação em Cadeia da Polimerase em Tempo Real
11.
Sci Rep ; 12(1): 14764, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042341

RESUMO

Chromosome translocation (TL) is an important mode of genomic changes underlying human tumorigenesis, the detailed mechanisms of which are, however, still not well understood. The two major modalities of DNA double strand break repair, i.e. homologous recombination (HR) and non-homologous end-joining (NHEJ), have been hypothesized. In a typical TL+ human neoplasm, Ewing sarcoma, which is frequently associated with t(11;22) TL encoding the EWS-FLI1 fusion gene, NHEJ has been regarded as a model to explain the disease-specific TL. Using comprehensive microarray approaches, we observed that expression of the HR genes, particularly of RAD51, is upregulated in TL+ Ewing sarcoma cell lines, WE-68 and SK-N-MC, as in the other TL+ tumor cell lines and one defective in DNA mismatch repair (MMR). The upregulated RAD51 expression indeed lead to frequent focus formation, which may suggest an activation of the HR pathway in these cells. Furthermore, sister chromatid exchange was frequently observed in the TL+ and MMR-defective cells. Intriguingly, ionizing irradiation revealed that the decrease of 53BP1 foci was significantly retarded in the Ewing sarcoma cell lines, suggesting that the NHEJ pathway may be less active in the cells. These observations may support an HR involvement, at least in part, to explain TL in Ewing sarcoma.


Assuntos
Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/patologia , Translocação Genética
12.
Bioorg Med Chem ; 67: 116764, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635928

RESUMO

It is known that p53 is an important transcription factor and plays a central role in ionizing radiation (IR)-induced DNA damage responses such as cell cycle arrest, DNA repair and apoptosis. We previously reported that regulating p53 protein is an effective strategy for modulating cell fate by reducing the acute side effects of radiation therapy. Herein, we report on the discovery of STK160830 as a new radioprotector from a chemical library at The University of Tokyo and the design, synthesis and biological evaluation of its derivatives. The radioprotective activity of STK160830 itself and its derivatives that were synthesized in this work was evaluated using a leukemia cell line, MOLT-4 cells as a model of normal cells that express the p53 protein in a structure-activity relationships (SAR) study. The experimental results suggest that a direct relationship exists between the inhibitory effect of these STK160830 derivatives on the expression level of p53 and their radioprotective activity and that the suppression of p53 by STK160830 derivatives contribute to protecting MOLT-4 cells from apoptosis that is induced by exposure to radiation.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Dano ao DNA , Reparo do DNA , Proteína Supressora de Tumor p53/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-35483779

RESUMO

Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 µM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.


Assuntos
Compostos de Anilina , Senoterapia , Compostos de Anilina/farmacologia , DNA , Sulfonamidas/farmacologia
14.
Oncol Lett ; 23(1): 29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34868366

RESUMO

The growing importance of antitumour immunity by cancer immunotherapy has prompted studies on radiotherapy-induced immune response. Previous studies have indicated that programmed cell death-1 ligand (PD-L1) expression is regulated by DNA damage signalling. However, PD-L1 up-regulation after radiotherapy has not been fully investigated at the clinical level, particularly in the context of expression of DNA repair factors. The present study examined the correlation of mRNA expression between PD-L1 and non-homologous end joining (NHEJ) factors using The Cancer Genome Atlas database analysis. Among NHEJ factors, Ku80 mRNA expression was negatively correlated with PD-L1 mRNA expression levels in several types of cancer (colon adenocarcinoma, breast invasive carcinoma, skin cutaneous melanoma, lung adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma). To verify the negative correlation in clinical samples, the present study analysed whether Ku80 expression levels affected PD-L1 up-regulation after radiotherapy using cervical squamous cell carcinoma samples. Quantitative evaluation using software analysis of immunohistochemically stained slides revealed that patients with low Ku80 positivity in biopsy specimens demonstrated increased PD-L1 expression levels after 10 Gy irradiation (Spearman's rank correlation coefficient=-0.274; P=0.017). Furthermore, PD-L1 induction levels in tumour cells after 10 Gy of irradiation were significantly inversely correlated with Ku80 expression levels (Spearman's rank correlation coefficient=-0.379; P<0.001). The present study also confirmed that short interfering RNA-mediated Ku80 depletion was associated with greater X-ray-induced PD-L1 up-regulation in HeLa cells. These results indicated that radiotherapy could enhance PD-L1 induction in tumour cells with low Ku80 expression in a clinical setting. Furthermore, these data highlighted Ku80 as a potential predictive biomarker for immune checkpoint therapy combined with radiotherapy.

15.
Life (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685458

RESUMO

RNA synthesis inhibitors and protein synthesis inhibitors are useful for investigating whether biological events with unknown mechanisms require transcription or translation; however, the dependence of RNA synthesis has been difficult to verify because many RNA synthesis inhibitors cause adverse events that trigger a p53 response. In this study, we screened a library containing 9600 core compounds and obtained STK160830 that shows anti-apoptotic effects in irradiated wild-type-p53-bearing human T-cell leukemia MOLT-4 cells and murine thymocytes. In many of the p53-impaired cells and p53-knockdown cells tested, STK160830 did not show a remarkable anti-apoptotic effect, suggesting that the anti-apoptotic activity is p53-dependent. In the expression analysis of p53, p53-target gene products, and reference proteins by immunoblotting, STK160830 down-regulated the expression of many of the proteins examined, and the downregulation correlated strongly with its inhibitory effect on cell death. mRNA expression analyses by qPCR and nascent RNA capture kit revealed that STK160830 showed a decreased mRNA expression, which was similar to that induced by the RNA synthesis inhibitor actinomycin D but differed to some extent. Furthermore, unlike other RNA synthesis inhibitors such as actinomycin D, p53 accumulation by STK160830 alone was negligible, and a DNA melting-curve analysis showed very weak DNA-intercalating activity, indicating that STK160830 is a useful inhibitor for RNA synthesis without triggering p53-mediated damage responses.

16.
J Radiat Res ; 62(5): 773-781, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34196706

RESUMO

Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.


Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioterapia com Íons Pesados , Proteínas de Neoplasias/biossíntese , Osteossarcoma/patologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Transferência Linear de Energia , Morfolinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Pirazinas/farmacologia , Pironas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Fator de Transcrição STAT1/metabolismo , Sulfonas/farmacologia , Regulação para Cima/efeitos da radiação , Raios X
17.
Clin Endocrinol (Oxf) ; 95(5): 790-799, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34322882

RESUMO

OBJECTIVE: Telomerase reverse transcriptase promoter (TERT-p) mutations are strongly associated with tumour aggressiveness and worse prognosis in papillary thyroid carcinomas (PTCs). Since the TERT-p mutations have been reported to be subclonal, it is unclear how accurately they can be detected by preoperative fine-needle aspiration (FNA). The objective of this study was to analyse the concordance rate of the TERT-p mutations between preoperative FNA and corresponding postoperative surgical specimens. DESIGN AND PATIENTS: Ninety-six cases of PTC aged 55 years or older were studied. The mutational status of TERT-p was detected by droplet digital polymerase chain reaction assay. RESULTS: The mutational status of the TERT-p in FNA samples was highly concordant with that in postoperative formalin-fixed and paraffin-embedded (FFPE) specimens. The TERT-p mutation was significantly associated with age, tumour size, extrathyroidal extension and the Ki-67 labelling index in multivariate analysis in both FNA and FFPE samples. CONCLUSIONS: The detection of the TERT-p mutations using FNA samples has a good ability to predict disease aggressiveness and, therefore, could be clinically useful in the determination of PTC management.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Biópsia por Agulha Fina , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
18.
J Radiat Res ; 62(Supplement_1): i30-i35, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33978178

RESUMO

DNA double-strand breaks (DSBs) induced by ionizing radiation are the major cause of cell death, leading to tissue/organ injuries, which is a fundamental mechanism underlying the development of tissue reaction. Since unscheduled senescence, predominantly induced among epithelial tissues/organs, is one of the major modes of cell death in response to radiation exposure, its role in tissue reaction has been extensively studied, and it has become clear that senescence-mediated secretion of soluble factors is an indispensable component of the manifestation of tissue reaction. Recently, an unexpected link between cytoplasmic DSBs and innate immunity was discovered. The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) results in the stimulation of the cGAS-stimulator of interferon genes (STING) pathway, which has been shown to regulate the transactivation of a variety of secretory factors that are the same as those secreted from senescent cells. Furthermore, it has been proven that cGAS-STING pathway also mediates execution of the senescence process by itself. Hence, an autocrine/paracrine feedback loop has been discussed in previous literature in relation to its effect on the tissue microenvironment. As the tissue microenvironment plays a crucial role in cancer development, tissue reaction could be involved in the late health effects caused by radiation exposure. In this paper, the novel findings in radiation biology, which should provide a better understanding of the mechanisms underlying radiation-induced carcinogenesis, are overviewed.


Assuntos
Especificidade de Órgãos , Radiobiologia , Senescência Celular/efeitos da radiação , Humanos , Imunidade Inata , Neoplasias/patologia , Fenótipo , Exposição à Radiação
19.
Oncol Lett ; 21(6): 446, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868484

RESUMO

Radiotherapy induces an immune response in the cancer microenvironment that may influence clinical outcome. The present study aimed to analyse the alteration of CD8+ T-cell infiltration and programmed death-ligand 1 (PD-L1) expression following radiotherapy in clinical samples from patients with uterine cervical squamous cell carcinoma. Additionally, the current study sought to analyse the association between these immune responses and clinical outcomes. A total of 75 patients who received either definitive chemoradiotherapy or radiotherapy were retrospectively analyzed. CD8+ T-cell infiltration and PD-L1 expression were determined by immunohistochemistry using biopsy specimens before radiotherapy (pre-RT) and after 10 Gy radiotherapy (post-10 Gy). The PD-L1+ rate was significantly increased from 5% (4/75) pre-RT to 52% (39/75) post-10 Gy (P<0.01). Despite this increase in the PD-L1+ rate post-10 Gy, there was no significant association between both pre-RT and post-10 Gy and overall survival (OS), locoregional control (LC) and progression-free survival (PFS). On the other hand, the CD8+ T-cell infiltration density was significantly decreased for all patients (median, 23.1% pre-RT vs. 16.9% post-10 Gy; P=0.038); however, this tended to increase in patients treated with radiotherapy alone (median, 17.7% pre-RT vs. 24.0% post-10 Gy; P=0.400). Notably, patients with high CD8+ T-cell infiltration either pre-RT or post-10 Gy exhibited positive associations with OS, LC and PFS. Thus, the present analysis suggested that CD8+ T-cell infiltration may be a prognostic biomarker for patients with cervical cancer receiving radiotherapy. Furthermore, immune checkpoint inhibitors may be effective in patients who have received radiotherapy, since radiotherapy upregulated PD-L1 expression in cervical cancer specimens.

20.
Radiat Res ; 195(6): 561-567, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826740

RESUMO

The genomic landscape neighboring large deletions including the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus on human X chromosome in 6-thioguanine-resistant mutants originating from immortalized human fibroblast cells exposed to X rays was characterized by real-time quantitative PCR (qPCR)-based analyses. Among the 13 mutant clones with large deletions extending over several Mb, including the HPRT locus, revealed by 10 conventional sequence-tagged site (STS) markers, three clones bearing the largest deletions were selected for further qPCR analysis using another 21 STS markers and 15 newly designed PCR primer pairs. The results indicated that the major deletions were in very specific regions between the 130-Mb and 140-Mb positions containing the HPRT locus on the X chromosome and, contrary to our initial expectations, additional minor deletions were distributed in a patchwork pattern. These findings strongly indicate that the complex deletion patterns in the affected chromosome are related to the radiation track structure with spatially heterogeneous energy deposition and the specific structure of the chromatin-nuclear membrane complex. The uncovered complex deletion patterns are in agreement with the idea of complex chromatin damage, which is frequently associated with carcinogenesis.


Assuntos
Deleção Cromossômica , Genoma Humano/genética , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Loci Gênicos/genética , Humanos , Reação em Cadeia da Polimerase , Raios X/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA