Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(15): 4573-4588, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38557811

RESUMO

Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.


Assuntos
Óxido Nítrico , Oxirredução , Óxido Nítrico/metabolismo , Plantas/metabolismo , Metabolismo Energético , Oxigênio/metabolismo , Transdução de Sinais
2.
Trends Plant Sci ; 29(3): 275-277, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37951810

RESUMO

Group VII ethylene-responsive factor (ERFVII) transcription factors are crucial for the adaption of plants to conditions that limit oxygen availability. A recent study by Zubrycka et al. reveals new aspects of ERFVII stabilization through the PLANT CYSTEINE OXIDASE (PCO)-N degron pathway and non-autonomous regulation in response to different endogenous and exogenous cues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipóxia/genética , Plantas/genética , Plantas/metabolismo , Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA