Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 14(5): e1783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994829

RESUMO

The 3'-end processing of mRNA is a co-transcriptional process that leads to the formation of a poly-adenosine tail on the mRNA and directly controls termination of the RNA polymerase II juggernaut. This process involves a megadalton complex composed of cleavage and polyadenylation specificity factors (CPSFs) that are able to recognize cis-sequence elements on nascent mRNA to then carry out cleavage and polyadenylation reactions. Recent structural and biochemical studies have defined the roles played by different subunits of the complex and provided a comprehensive mechanistic understanding of this machinery in yeast or metazoans. More recently, the discovery of small molecule inhibitors of CPSF function in Apicomplexa has stimulated interest in studying the specificities of this ancient eukaryotic machinery in these organisms. Although its function is conserved in Apicomplexa, the CPSF complex integrates a novel reader of the N6-methyladenosine (m6A). This feature, inherited from the plant kingdom, bridges m6A metabolism directly to 3'-end processing and by extension, to transcription termination. In this review, we will examine convergence and divergence of CPSF within the apicomplexan parasites and explore the potential of small molecule inhibition of this machinery within these organisms. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.


Assuntos
Parasitos , Animais , Parasitos/genética , Parasitos/metabolismo , Poliadenilação , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Precursores de RNA/metabolismo
2.
Sci Transl Med ; 14(656): eabn3231, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35921477

RESUMO

The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.


Assuntos
Criptosporidiose , Cryptosporidium , Malária Falciparum , Toxoplasma , Inibidores da Angiogênese/uso terapêutico , Animais , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Inibidores de Proteínas Quinases/farmacologia , Spliceossomos , Toxoplasma/genética
3.
BMC Biol ; 19(1): 25, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33557824

RESUMO

BACKGROUND: Biomarker discovery remains a major challenge for predictive medicine, in particular, in the context of chronic diseases. This is true for the widespread protozoan Toxoplasma gondii which establishes long-lasting parasitism in metazoans, humans included. This microbe successively unfolds distinct genetic programs that direct the transition from high to low replicative potential inside host cells. As a slow-replicating cell, the T. gondii bradyzoite developmental stage persists enclosed in a cyst compartment within tissues including the nervous system, being held by a sustained immune equilibrium which accounts for the prolonged clinically silent phase of parasitism. Serological surveys indicate that nearly one third of the human population has been exposed to T. gondii and possibly host bradyzoites. Because any disruption of the immune balance drives the reverse transition from bradyzoite to fast replicating tachyzoite and uncontrolled growth of the latter, these people are at risk for life-threatening disease. While serological tests for discriminating recent from past infection are available, there is yet no immunogenic biomarker used in the serological test to allow ascertaining the presence of persistent bradyzoites. RESULTS: Capitalizing on genetically engineered parasites induced to produce mature bradyzoites in vitro, we have identified the BCLA/MAG2 protein being restricted to the bradyzoite and the cyst envelope. Using laboratory mice as relevant T. gondii host models, we demonstrated that BCLA/MAG2 drives the generation of antibodies that recognize bradyzoite and the enveloping cyst structure. We have designed an ELISA assay based on a bacterially produced BCLA recombinant polypeptide, which was validated using a large collection of sera from mice of different genetic backgrounds and infected with bcla+ or bcla-null cystogenic and non-cystogenic T. gondii strains. To refine the design of the ELISA assay, we applied high-resolution BCLA epitope mapping and identified a specific combination of peptides and accordingly set up a selective and sensitive ELISA assay which allowed the detection of anti-BCLA/MAG2 antibodies in the sera of human patients with various forms of toxoplasmosis. CONCLUSIONS: We brought proof of principle that anti-BCLA/MAG2 antibodies serve as specific and sensitive serological markers in the perspective of a combinatorial strategy for detection of persistent T. gondii parasitism.


Assuntos
Encéfalo/parasitologia , Toxoplasma/fisiologia , Toxoplasmose/diagnóstico , Animais , Biomarcadores/metabolismo , Doença Crônica , Camundongos , Testes Sorológicos , Toxoplasmose/parasitologia , Toxoplasmose/patologia
4.
Nat Microbiol ; 5(4): 570-583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094587

RESUMO

Toxoplasma gondii has a complex life cycle that is typified by asexual development that takes place in vertebrates, and sexual reproduction, which occurs exclusively in felids and is therefore less studied. The developmental transitions rely on changes in the patterns of gene expression, and recent studies have assigned roles for chromatin shapers, including histone modifications, in establishing specific epigenetic programs for each given stage. Here, we identified the T. gondii microrchidia (MORC) protein as an upstream transcriptional repressor of sexual commitment. MORC, in a complex with Apetala 2 (AP2) transcription factors, was shown to recruit the histone deacetylase HDAC3, thereby impeding the accessibility of chromatin at the genes that are exclusively expressed during sexual stages. We found that MORC-depleted cells underwent marked transcriptional changes, resulting in the expression of a specific repertoire of genes, and revealing a shift from asexual proliferation to sexual differentiation. MORC acts as a master regulator that directs the hierarchical expression of secondary AP2 transcription factors, and these transcription factors potentially contribute to the unidirectionality of the life cycle. Thus, MORC plays a cardinal role in the T. gondii life cycle, and its conditional depletion offers a method to study the sexual development of the parasite in vitro, and is proposed as an alternative to the requirement of T. gondii infections in cats.


Assuntos
Adenosina Trifosfatases/genética , Histona Desacetilases/genética , Histonas/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Fatores de Transcrição/genética , Transcrição Gênica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Animais , Gatos , Cromatina , Fibroblastos/parasitologia , Código das Histonas , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Estágios do Ciclo de Vida/genética , Modelos Moleculares , Cultura Primária de Células , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694928

RESUMO

Cryptosporidium is an intestinal pathogen that causes severe but self-limiting diarrhea in healthy humans, yet it can turn into a life-threatening, unrelenting infection in immunocompromised patients and young children. Severe diarrhea is recognized as the leading cause of mortality for children below 5 years of age in developing countries. The only approved treatment against cryptosporidiosis, nitazoxanide, has limited efficacy in the most vulnerable patient populations, including malnourished children, and is ineffective in immunocompromised individuals. Here, we investigate inhibition of the parasitic cleavage and polyadenylation specificity factor 3 (CPSF3) as a strategy to control Cryptosporidium infection. We show that the oxaborole AN3661 selectively blocked Cryptosporidium growth in human HCT-8 cells, and oral treatment with AN3661 reduced intestinal parasite burden in both immunocompromised and neonatal mouse models of infection with greater efficacy than nitazoxanide. Furthermore, we present crystal structures of recombinantly produced Cryptosporidium CPSF3, revealing a mechanism of action whereby the mRNA processing activity of this enzyme is efficiently blocked by the binding of the oxaborole group at the metal-dependent catalytic center. Our data provide insights that may help accelerate the development of next-generation anti-Cryptosporidium therapeutics.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Metais/química , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Linhagem Celular Tumoral , Fator de Especificidade de Clivagem e Poliadenilação/química , Cristalização , Humanos , Íleo/parasitologia , Íleo/ultraestrutura , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Recombinantes/metabolismo
6.
Viruses ; 8(9)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27649229

RESUMO

This paper describes a biochemical study for making complexes between the nucleoprotein of influenza viruses A and B (A/NP and B/NP) and small RNAs (polyUC RNAs from 5 to 24 nucleotides (nt)), starting from monomeric proteins. We used negative stain electron microscopy, size exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) analysis, and fluorescence anisotropy measurements to show how the NP-RNA complexes evolve. Both proteins make small oligomers with 24-nt RNAs, trimers for A/NP, and dimers, tetramers, and larger complexes for B/NP. With shorter RNAs, the affinities of NP are all in the same range at 50 mM NaCl, showing that the RNAs bind on the same site. The affinity of B/NP for a 24-nt RNA does not change with salt. However, the affinity of A/NP for a 24-nt RNA is lower at 150 and 300 mM NaCl, suggesting that the RNA binds to another site, either on the same protomer or on a neighbour protomer. For our fluorescence anisotropy experiments, we used 6-fluorescein amidite (FAM)-labelled RNAs. By using a (UC)6-FAM(3') RNA with 150 mM NaCl, we observed an interesting phenomenon that gives macromolecular complexes similar to the ribonucleoprotein particles purified from the viruses.


Assuntos
Orthomyxoviridae/fisiologia , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas do Core Viral/metabolismo , Sítios de Ligação , Proteínas do Nucleocapsídeo , Ligação Proteica , Montagem de Vírus
7.
Sci Rep ; 6: 24727, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095520

RESUMO

The genome of influenza A virus (IAV) comprises eight RNA segments (vRNA) which are transcribed and replicated by the heterotrimeric IAV RNA-dependent RNA-polymerase (RdRp). RdRp consists of three subunits (PA, PB1 and PB2) and binds both the highly conserved 3'- and 5'-ends of the vRNA segment. The IAV RdRp is an important antiviral target, but its structural mechanism has remained largely elusive to date. By applying a polyprotein strategy, we produced RdRp complexes and define a minimal human IAV RdRp core complex. We show that PA-PB1 forms a stable heterodimeric submodule that can strongly interact with 5'-vRNA. In contrast, 3'-vRNA recognition critically depends on the PB2 N-terminal domain. Moreover, we demonstrate that PA-PB1 forms a stable and stoichiometric complex with host nuclear import factor RanBP5 that can be modelled using SAXS and we show that the PA-PB1-RanPB5 complex is no longer capable of 5'-vRNA binding. Our results provide further evidence for a step-wise assembly of IAV structural components, regulated by nuclear transport mechanisms and host factor binding.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Influenza Humana/virologia , Subunidades Proteicas/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , beta Carioferinas/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Curr Opin Struct Biol ; 32: 139-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25996897

RESUMO

Polyproteins are chains of covalently conjoined smaller proteins that occur in nature as versatile means to organize the proteome of viruses including HIV. During maturation, viral polyproteins are typically cleaved into the constituent proteins with different biological functions by highly specific proteases, and structural analyses at defined stages of this maturation process can provide clues for antiviral intervention strategies. Recombinant polyproteins that use similar mechanisms are emerging as powerful tools for producing hitherto inaccessible protein targets such as the influenza polymerase, for high-resolution structure determination by X-ray crystallography. Conversely, covalent linking of individual protein subunits into single polypeptide chains are exploited to overcome sample preparation bottlenecks. Moreover, synthetic polyproteins provide a promising tool to dissect dynamic folding of polypeptide chains into three-dimensional architectures in single-molecule structure analysis by atomic force microscopy (AFM). The recent use of natural and synthetic polyproteins in structural biology and major achievements are highlighted in this contribution.


Assuntos
Poliproteínas/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X/métodos , Humanos , Microscopia de Força Atômica/métodos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Virais/química , Vírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA