Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 15(7): 685-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751268

RESUMO

Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.


Assuntos
Toxinas Botulínicas/antagonistas & inibidores , Descoberta de Drogas/métodos , Metaloproteases/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antitoxina Botulínica/administração & dosagem , Antitoxina Botulínica/metabolismo , Antitoxina Botulínica/uso terapêutico , Toxinas Botulínicas/química , Endopeptidases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Neurotoxinas/química , Peptídeos/química , Peptídeos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Bibliotecas de Moléculas Pequenas/química
2.
Biochemistry ; 52(37): 6525-36, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23972005

RESUMO

Proteins of unknown function belonging to cog1816 and cog0402 were characterized. Sav2595 from Steptomyces avermitilis MA-4680, Acel0264 from Acidothermus cellulolyticus 11B, Nis0429 from Nitratiruptor sp. SB155-2 and Dr0824 from Deinococcus radiodurans R1 were cloned, purified, and their substrate profiles determined. These enzymes were previously incorrectly annotated as adenosine deaminases or chlorohydrolases. It was shown here that these enzymes actually deaminate 6-aminodeoxyfutalosine. The deamination of 6-aminodeoxyfutalosine is part of an alternative menaquinone biosynthetic pathway that involves the formation of futalosine. 6-Aminodeoxyfutalosine is deaminated by these enzymes with catalytic efficiencies greater than 10(5) M(-1) s(-1), Km values of 0.9-6.0 µM, and kcat values of 1.2-8.6 s(-1). Adenosine, 2'-deoxyadenosine, thiomethyladenosine, and S-adenosylhomocysteine are deaminated at least an order of magnitude slower than 6-aminodeoxyfutalosine. The crystal structure of Nis0429 was determined and the substrate, 6-aminodeoxyfutalosine, was positioned in the active site on the basis of the presence of adventitiously bound benzoic acid. In this model, Ser-145 interacts with the carboxylate moiety of the substrate. The structure of Dr0824 was also determined, but a collapsed active site pocket prevented docking of substrates. A computational model of Sav2595 was built on the basis of the crystal structure of adenosine deaminase and substrates were docked. The model predicted a conserved arginine after ß-strand 1 to be partially responsible for the substrate specificity of Sav2595.


Assuntos
Nucleosídeo Desaminases/metabolismo , Nucleosídeos de Purina/metabolismo , Vitamina K 2/metabolismo , Actinomycetales/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Desaminação , Deinococcus/enzimologia , Epsilonproteobacteria/enzimologia , Epsilonproteobacteria/genética , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Nucleosídeo Desaminases/genética , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
3.
J Biol Chem ; 288(33): 24223-33, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23779108

RESUMO

Botulinum neurotoxins are the most toxic of all compounds. The toxicity is related to a poor zinc endopeptidase activity located in a 50-kDa domain known as light chain (Lc) of the toxin. The C-terminal tail of Lc is not visible in any of the currently available x-ray structures, and it has no known function but undergoes autocatalytic truncations during purification and storage. By synthesizing C-terminal peptides of various lengths, in this study, we have shown that these peptides competitively inhibit the normal catalytic activity of Lc of serotype A (LcA) and have defined the length of the mature LcA to consist of the first 444 residues. Two catalytically inactive mutants also inhibited LcA activity. Our results suggested that the C terminus of LcA might interact at or near its own active site. By using synthetic C-terminal peptides from LcB, LcC1, LcD, LcE, and LcF and their respective substrate peptides, we have shown that the inhibition of activity is specific only for LcA. Although a potent inhibitor with a Ki of 4.5 µm, the largest of our LcA C-terminal peptides stimulated LcA activity when added at near-stoichiometric concentration to three versions of LcA differing in their C-terminal lengths. The result suggested a product removal role of the LcA C terminus. This suggestion is supported by a weak but specific interaction determined by isothermal titration calorimetry between an LcA C-terminal peptide and N-terminal product from a peptide substrate of LcA. Our results also underscore the importance of using a mature LcA as an inhibitor screening target.


Assuntos
Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Domínio Catalítico , Clostridium botulinum/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Calorimetria , Clostridium botulinum/classificação , Estabilidade Enzimática/efeitos dos fármacos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Sorotipagem , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/metabolismo , Temperatura
4.
Curr Top Microbiol Immunol ; 364: 197-218, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23239355

RESUMO

Clostridium botulinum neurotoxin is the most poisonous substance known to humans. It is a potential biowarfare threat and a public health hazard. The only therapeutics available is antibody treatment which will not be effective for post-exposure therapy. There are no drugs available for post-intoxication treatment. Accordingly, it is imperative to develop effective drugs to counter botulism. Available structural information on botulinum neurotoxins both alone and in complex with their substrates offers an efficient method for designing structure-based drugs to treat botulism.


Assuntos
Toxinas Botulínicas/antagonistas & inibidores , Botulismo/tratamento farmacológico , Clostridium botulinum/química , Descoberta de Drogas/métodos , Neurotoxinas/antagonistas & inibidores , Animais , Toxinas Botulínicas/química , Toxinas Botulínicas/toxicidade , Botulismo/microbiologia , Domínio Catalítico , Clostridium botulinum/patogenicidade , Inibidores Enzimáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Complexos Multiproteicos/química , Neurotoxinas/química , Neurotoxinas/toxicidade , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Mapeamento de Interação de Proteínas , Proteólise , Eletricidade Estática
5.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 5): 511-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22525749

RESUMO

Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC(50) of 0.9 µM and a K(i) of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Clostridium botulinum/enzimologia , Neurotoxinas/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Botulismo/tratamento farmacológico , Clostridium botulinum/química , Clostridium botulinum/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Relação Estrutura-Atividade
6.
Chembiochem ; 13(1): 129-36, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22109989

RESUMO

MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.


Assuntos
Monofosfato de Adenosina/farmacologia , Inibidores Enzimáticos/farmacologia , Fenilbutiratos/farmacologia , Succinato-CoA Ligases/antagonistas & inibidores , Vitamina K 2/metabolismo , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Fenilbutiratos/síntese química , Fenilbutiratos/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Succinato-CoA Ligases/metabolismo , Vitamina K 2/química
7.
Proteins ; 80(1): 261-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072612

RESUMO

The araBAD operon encodes three different enzymes required for catabolism of L-arabinose, which is one of the most abundant monosaccharides in nature. L-ribulokinase, encoded by the araB gene, catalyzes conversion of L-ribulose to L-ribulose-5-phosphate, the second step in the catabolic pathway. Unlike other kinases, ribulokinase exhibits diversity in substrate selectivity and catalyzes phosphorylation of all four 2-ketopentose sugars with comparable k(cat) values. To understand ribulokinase recognition and phosphorylation of a diverse set of substrates, we have determined the X-ray structure of ribulokinase from Bacillus halodurans bound to L-ribulose and investigated its substrate and ATP co-factor binding properties. The polypeptide chain is folded into two domains, one small and the other large, with a deep cleft in between. By analogy with related sugar kinases, we identified (447)GGLPQK(452) as the ATP-binding motif within the smaller domain. L-ribulose binds in the cleft between the two domains via hydrogen bonds with the side chains of highly conserved Trp126, Lys208, Asp274, and Glu329 and the main chain nitrogen of Ala96. The interaction of L-ribulokinase with L-ribulose reveals versatile structural features that help explain recognition of various 2-ketopentose substrates and competitive inhibition by L-erythrulose. Comparison of our structure to that of the structures of other sugar kinases revealed conformational variations that suggest domain-domain closure movements are responsible for establishing the observed active site environment.


Assuntos
Bacillus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Estrutura Terciária de Proteína , Especificidade por Substrato , Tetroses/química
8.
Biochemistry ; 50(30): 6589-97, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21710971

RESUMO

Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k(cat)/K(m) values that exceed 10(5) M(-1) s(-1). These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted (ß/α)(8) barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.


Assuntos
Adenosina Desaminase/química , Proteínas de Bactérias/química , Pseudomonas aeruginosa/enzimologia , Adenosina Desaminase/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Arthrobacter/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Desaminação , Ligantes , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Zinco/química
9.
J Biol Chem ; 286(3): 1802-11, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20961849

RESUMO

Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Oligopeptídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Linhagem Celular , Cerebelo/metabolismo , Galinhas , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , Neurônios/metabolismo , Oligopeptídeos/química , Ratos , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
10.
J Mol Biol ; 406(2): 313-24, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21185305

RESUMO

Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 Å, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Legionella pneumophila/enzimologia , Monofosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
11.
Biochemistry ; 49(20): 4374-82, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20415463

RESUMO

Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin.


Assuntos
Aminoidrolases/química , Aminoidrolases/genética , Xantopterina/metabolismo , Sequência de Aminoácidos , Aminoidrolases/metabolismo , Aminoidrolases/fisiologia , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
Nat Struct Mol Biol ; 16(7): 789-94, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543288

RESUMO

Clostridium botulinum neurotoxins (BoNTs) cleave neuronal proteins responsible for neurotransmitter release, causing the neuroparalytic disease botulism. BoNT serotypes B, D, F and G cleave and inactivate vesicle-associated membrane protein (VAMP), each at a unique peptide bond. The specificity of BoNTs depends on the mode of substrate recognition. We have investigated the mechanism of substrate recognition of BoNT F by determining the crystal structures of its complex with two substrate-based inhibitors, VAMP 22-58/Gln58D-cysteine and 27-58/Gln58D-cysteine. The inhibitors bind to BoNT F in the canonical direction (as seen for BoNTs A and E substrates) but are positioned specifically via three major exosites away from the active site. The cysteine sulfur of the inhibitors interacts with the zinc and exists as sulfinic acid in the inhibitor VAMP 27-58/Gln58D-cysteine. Arg133 and Arg171, which form part of two separate exosites, are crucial for substrate binding and catalysis.


Assuntos
Toxinas Botulínicas/antagonistas & inibidores , Toxinas Botulínicas/química , Isoformas de Proteínas/metabolismo , Proteínas R-SNARE/metabolismo , Sequência de Aminoácidos , Toxinas Botulínicas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Isoformas de Proteínas/genética , Proteínas R-SNARE/genética , Especificidade por Substrato , Enxofre/química
13.
PLoS One ; 3(12): e3903, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19079550

RESUMO

We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel beta-sheet and five alpha-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.


Assuntos
Archaea/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade da Espécie , Eletricidade Estática , Temperatura
14.
Biochemistry ; 47(36): 9592-601, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18707125

RESUMO

Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.


Assuntos
Inibidores da Colinesterase/química , Farmacorresistência Fúngica/fisiologia , Paraoxon/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Tioléster Hidrolases/química , Substituição de Aminoácidos , Sítios de Ligação , Carboxilesterase/química , Carboxilesterase/genética , Carboxilesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Mutação de Sentido Incorreto , Paraoxon/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
15.
J Biol Chem ; 283(38): 25944-51, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18658150

RESUMO

Clostridium botulinum neurotoxins are the most potent toxins to humans. The recognition and cleavage of SNAREs are prime evente in exhibiting their toxicity. We report here the crystal structure of the catalytically active full-length botulinum serotype E catalytic domain (BoNT E) in complex with SNAP-25 (a SNARE protein) substrate peptide Arg(180)-Ile(181)-Met(182)-Glu(183) (P1-P3'). It is remarkable that the peptide spanning the scissile bond binds to but bypasses cleavage by the enzyme and inhibits the catalysis fairly with K(i) approximately 69 microm. The inhibitory peptide occupies the active site of BoNT E and shows well defined electron density. The catalytic zinc and the conserved key residue Tyr(350) of the enzyme facilitate the docking of Arg(180) (P1) by interacting with its carbonyl oxygen that displaces the nucleophilic water. The general base Glu(212) side chain interacts with the main chain amino group of P1 and P1'. Conserved Arg(347) of BoNT E stabilizes the proper docking of the Ile(181) (P1') main chain, whereas the hydrophobic pockets stabilize the side chains of Ile(181) (P1') and Met(182) (P2'), and the 250 loop stabilizes Glu(183) (P3'). Structural and functional analysis revealed an important role for the P1' residue and S1' pocket in driving substrate recognition and docking at the active site. This study is the first of its kind and rationalizes the substrate cleavage strategy of BoNT E. Also, our complex structure opens up an excellent opportunity of structure-based drug design for this fast acting and extremely toxic high priority BoNT E.


Assuntos
Clostridium botulinum tipo E/metabolismo , Neurotoxinas/química , Proteína 25 Associada a Sinaptossoma/química , Arginina/química , Sítios de Ligação , Toxinas Botulínicas , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Cinética , Conformação Molecular , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química
16.
J Biol Chem ; 283(14): 8946-53, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18245086

RESUMO

Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-beta and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93A resolution. The polypeptide chain adopts the typical alphabetaalpha PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.


Assuntos
Fosfatases de Especificidade Dupla/química , Dobramento de Proteína , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Catálise , Cristalografia por Raios X , Fosfatases de Especificidade Dupla/metabolismo , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 4/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno , Especificidade por Substrato
17.
J Mol Biol ; 368(2): 450-63, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17362992

RESUMO

Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amidohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 A resolution X-ray structure reveals an alpha/beta scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the (beta/alpha)(8)-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to co-catalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site.


Assuntos
Escherichia coli/enzimologia , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo , Alantoína/química , Alantoína/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Evolução Molecular , Exopeptidases/metabolismo , Ligantes , Dados de Sequência Molecular , Peptídeos/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Zinco/metabolismo
18.
Biochemistry ; 44(23): 8291-302, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15938619

RESUMO

Clostridial neurotoxins comprising the seven serotypes of botulinum neurotoxins and tetanus neurotoxin are the most potent toxins known to humans. Their potency coupled with their specificity and selectivity underscores the importance in understanding their mechanism of action in order to develop a strategy for designing counter measures against them. To develop an effective vaccine against the toxin, it is imperative to achieve an inactive form of the protein which preserves the overall conformation and immunogenicity. Inactive mutants can be achieved either by targeting active site residues or by modifying the surface charges farther away from the active site. The latter affects the long-range forces such as electrostatic potentials in a subtle way without disturbing the structural integrity of the toxin causing some drastic changes in the activity/environment. Here we report structural and biochemical analysis on several mutations on Clostridium botulinum neurotoxin type E light chain with at least two producing dramatic effects: Glu335Gln causes the toxin to transform into a persistent apoenzyme devoid of zinc, and Tyr350Ala has no hydrolytic activity. The structural analysis of several mutants has led to a better understanding of the catalytic mechanism of this family of proteins. The residues forming the S1' subsite have been identified by comparing this structure with a thermolysin-inhibitor complex structure.


Assuntos
Apoenzimas/química , Apoenzimas/genética , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Mutagênese Sítio-Dirigida , Neurotoxinas/química , Neurotoxinas/genética , Alanina/genética , Apoenzimas/metabolismo , Arginina/genética , Asparagina/genética , Sítios de Ligação/genética , Toxinas Botulínicas/metabolismo , Catálise , Cristalização , Ativação Enzimática/genética , Ácido Glutâmico/genética , Glutamina/genética , Cinética , Neprilisina/química , Neprilisina/metabolismo , Neurotoxinas/metabolismo , Inibidores de Proteases/química , Especificidade por Substrato/genética , Termolisina/antagonistas & inibidores , Termolisina/química , Termolisina/metabolismo , Treonina/genética , Tirosina/genética
19.
Protein Sci ; 14(3): 719-26, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15722447

RESUMO

Appr-1''-pase, an important and ubiquitous cellular processing enzyme involved in the tRNA splicing pathway, catalyzes the conversion of ADP-ribose-1''monophosphate (Appr-1''-p) to ADP-ribose. The structures of the native enzyme from the yeast and its complex with ADP-ribose were determined to 1.9 A and 2.05 A, respectively. Analysis of the three-dimensional structure of this protein, selected as a target in a structural genomics project, reveals its putative function and provides clues to the catalytic mechanism. The structure of the 284-amino acid protein shows a two-domain architecture consisting of a three-layer alphabetaalpha sandwich N-terminal domain connected to a small C-terminal helical domain. The structure of Appr-1''-pase in complex with the product, ADP-ribose, reveals an active-site water molecule poised for nucleophilic attack on the terminal phosphate group. Loop-region residues Asn 80, Asp 90, and His 145 may form a catalytic triad.


Assuntos
Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/metabolismo , Monoéster Fosfórico Hidrolases/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Monoéster Fosfórico Hidrolases/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/enzimologia
20.
Proteins ; 52(2): 283-91, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12833551

RESUMO

The crystal structure of a yeast hypothetical protein with sequence similarity to CN hydrolases has been determined to 2.4 A resolution by the multiwavelength anomalous dispersion (MAD) method. The protein folds as a four-layer alphabetabetaalpha sandwich and exists as a dimer in the crystal and in solution. It was selected in a structural genomics project as representative of CN hydrolases at a time when no structures had been determined for members of this family. Structures for two other members of the family have since been reported and the three proteins have similar topology and dimerization modes, which are distinct from those of other alphabetabetaalpha proteins whose structures are known. The dimers form an unusual eight-layer alphabetabetaalpha:alphabetabetaalpha structure. Although the precise enzymatic reactions catalyzed by the yeast protein are not known, considerable information about the active site may be deduced from conserved sequence motifs, comparative biochemical information, and comparison with known structures of hydrolase active sites. As with serine hydrolases, the active-site nucleophile (cysteine in this case) is positioned on a nucleophile elbow.


Assuntos
Hidrolases Anidrido Ácido , Hidrolases/química , Modelos Moleculares , Saccharomyces cerevisiae/enzimologia , Amidoidrolases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Cianetos/metabolismo , Dimerização , Genoma Fúngico , Hidrolases/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA