Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 16(6): 910-921, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187586

RESUMO

Avascular necrosis (AVN) of the bones remains a major clinical challenge. Fractures in the talus, the scaphoid, and the neck of the femur are especially challenging to heal due to the low blood vessel network and the lack of collateral blood supply. These fractures are associated with high rates of nonunion and increased infections that require repeated operations. Conventional treatments by autografting or allografting bone replacement and synthetic bone implants have limitations, including the invasiveness of operative procedures, tissue supply insufficiency, and the risk of host rejection. The advancement in tissue engineering has revealed the potential of stem cells as restorative agents for bone injuries. The administration of mesenchymal stem cells (MSCs) into the talus, the scaphoid, and the neck of the femur could produce enhanced osteogenesis via the manipulation of MSC culture conditions. In this study, we used hydroxyapatite as the nanomaterial, and hypoxic milieu to enhance MSC differentiation capacity into the osteogenic lineage, allowing for more rapid and efficient bone cell replacement treatment. Our results demonstrate 1% oxygen and 12.5 µg/mL of hydroxyapatite (HAP) as the optimal conditions to incorporate the osteogenic medium for the osteogenic induction of MSCs. We also established a proof of concept that the addition of HAP and hypoxic conditions could augment the osteoinductive capacity of MSCs. We also developed an accurate mathematical model to support future bone cell replacement therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Durapatita , Humanos , Modelos Teóricos , Estresse Oxidativo
2.
J Photochem Photobiol B ; 203: 111727, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31862637

RESUMO

Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.


Assuntos
Polpa Dentária/citologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Humanos , Células Fotorreceptoras/fisiologia , Retina/fisiologia , Células-Tronco/citologia
3.
J Photochem Photobiol B ; 198: 111561, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352000

RESUMO

Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina. Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various factors, including the choice of potential stem cell source that can show variability in plasticity as well as host tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3 × 105 DPSCs as well as a single systemic administration of NaIO3 (40 mg/kg). Electroretinography (ERG) was performed for the next two months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated retinas within 4 weeks, which was statistically significant (* P ≤ .05) compared to the control. Retinal thickness of the control was also found to be thinner (*** P ≤ .001). The DPSCs were found integrated in the photoreceptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem cell therapy due to its protective effects against retinal degeneration.


Assuntos
Iodatos/toxicidade , Transplante de Células-Tronco Mesenquimais , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Polpa Dentária/citologia , Modelos Animais de Doenças , Eletrorretinografia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Fotorreceptoras/citologia , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/etiologia , Epitélio Pigmentado da Retina/patologia
4.
Regen Ther ; 9: 100-110, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30525080

RESUMO

INTRODUCTION: Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS: The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS: The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS: Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.

5.
Pharmacol Res ; 100: 47-57, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232590

RESUMO

6-Mercaptopurine is a cytotoxic and immunosuppressant drug. The use of this drug is limited due to its poor bioavailability and short plasma half-life. In order to nullify these drawbacks, 6-mercaptopurine-chitosan nanoparticles (6-MP-CNPs) were prepared and evaluated to study the influence of preparation conditions on the physicochemical properties by using DLS, SEM, XRD and FTIR. The in vitro drug release profile at pH 4.8 and 7.4 revealed sustained release patterns for a period of 2 days. The nanoformulations showed enhanced in vitro anti-cancer activities (MTT assay, apoptosis assay, cell cycle arrest and ROS indices) on HT-1080 and MCF-7 cells. In vivo pharmacokinetics profiles of 6-MP-CNPs showed improved bioavailability. Thus, the results of the present study revealed that, the prepared 6-MP-CNPs have a significant role in increasing anti-cancer efficacy, bioavailability and in vivo pharmacokinetics profiles.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Quitosana/administração & dosagem , Mercaptopurina/farmacologia , Mercaptopurina/farmacocinética , Nanopartículas/administração & dosagem , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Células MCF-7 , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA