Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38132129

RESUMO

Mammalian egg activation at fertilization is triggered by a long-lasting series of increases in cytosolic Ca2+ concentration. These Ca2+ oscillations are due to the production of InsP3 within the egg and the subsequent release of Ca2+ from the endoplasmic reticulum into the cytosol. The generation of InsP3 is initiated by the diffusion of sperm-specific phospholipase Czeta1 (PLCζ) into the egg after gamete fusion. PLCζ enables a positive feedback loop of InsP3 production and Ca2+ release which then stimulates further InsP3 production. Most cytosolic Ca2+ increases in eggs at fertilization involve a fast Ca2+ wave; however, due to the limited diffusion of InsP3, this means that InsP3 must be generated from an intracellular source rather than at the plasma membrane. All mammalian eggs studied generated Ca2+ oscillations in response to PLCζ, but the sensitivity of eggs to PLCζ and to some other stimuli varies between species. This is illustrated by the finding that incubation in Sr2+ medium stimulates Ca2+ oscillations in mouse and rat eggs but not eggs from other mammalian species. This difference appears to be due to the sensitivity of the type 1 InsP3 receptor (IP3R1). I suggest that ATP production from mitochondria modulates the sensitivity of the IP3R1 in a manner that could account for the differential sensitivity of eggs to stimuli that generate Ca2+ oscillations.


Assuntos
Sinalização do Cálcio , Fosfolipases , Masculino , Camundongos , Ratos , Animais , Fosfolipases/metabolismo , Cálcio/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Mamíferos/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Biochem J ; 480(24): 2023-2035, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38014506

RESUMO

Egg activation at fertilization in mouse eggs is caused by a series of cytosolic Ca2+ oscillations that are associated with an increase in ATP concentrations driven by increased mitochondrial activity. We have investigated the role of Ca2+ oscillations in these changes in ATP at fertilization by measuring the dynamics of ATP and Ca2+ in mouse eggs. An initial ATP increase started with the first Ca2+ transient at fertilization and then a secondary increase in ATP occurred ∼1 h later and this preceded a small and temporary increase in the frequency of Ca2+ oscillations. Other stimuli that caused Ca2+ oscillations such as PLCz1 or thimerosal, caused smaller or slower changes in ATP that failed to show the distinct secondary rise. Sperm-induced Ca2+ oscillations in the egg also triggered changes in the fluorescence of NADH which followed the pattern of Ca2+ spikes in a similar pattern to oscillations triggered by PLCz1 or thimerosal. When eggs were loaded with low concentrations of the Ca2+ chelator BAPTA, sperm triggered one small Ca2+ increase, but there were still extra phases of ATP increase that were similar to control fertilized eggs. Singular Ca2+ increases caused by thapsigargin were much less effective in elevating ATP levels. Together these data suggest that the secondary ATP increase at fertilization in mouse eggs is not caused by increases in cytosolic Ca2+. The fertilizing sperm may stimulate ATP production in eggs via both Ca2+ and by another mechanism that is independent of PLCz1 or Ca2+ oscillations.


Assuntos
Cálcio , Timerosal , Camundongos , Masculino , Animais , Timerosal/farmacologia , Sêmen , Espermatozoides/fisiologia , Trifosfato de Adenosina , Fertilização/fisiologia
3.
Reproduction ; 164(1): F1-F8, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35521907

RESUMO

In 2002, sperm-specific phospholipase C zeta1 (PLCZ1) was discovered and through these 20 years, it has been established as the predominant sperm oocyte-activating factor. PLCZ1 cRNA expression or direct protein microinjection into mammalian oocytes triggers calcium (Ca2+) oscillations indistinguishable from those observed at fertilization. The imperative role of PLCZ1 in oocyte activation is revealed by the vast number of human mutations throughout the PLCZ1 gene that have been identified and directly linked with certain forms of male infertility due to oocyte activation deficiency. PLCZ1 is the smallest PLC in size, comprising four N-terminal EF-hand domains, followed by X and Y catalytic domains, which are separated by the XY-linker, and ending with a C-terminal C2 domain. The EF hands are responsible for the high Ca2+ sensitivity of PLCZ1. The X and Y catalytic domains are responsible for the catalysis of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] substrate to produce the Ca2+-mobilising messenger, inositol 1,4,5-trisphosphate (IP3), while the XY-linker plays multiple roles in the unique mode of PLCZ1 action. Finally, the C2 domain has been proposed to facilitate the anchoring of PLCZ1 to intracellular vesicles through its direct interactions with specific phosphoinositides. This review discusses recent advances in the structure and function relationship of PLCZ1 and the potential binding partners of this important sperm-specific protein in the sperm and oocyte. The unravelling of all the remaining hidden secrets of sperm PLCZ1 should help us to understand the precise mechanism of fertilization, as well as enabling the diagnosis and treatment of currently unknown forms of PLCZ1 -linked human infertility.


Assuntos
Cálcio , Fosfolipases Tipo C , Animais , Cálcio/metabolismo , Fertilização/fisiologia , Humanos , Masculino , Mamíferos/metabolismo , Oócitos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/metabolismo , Fosfolipases Tipo C/metabolismo
4.
Mol Hum Reprod ; 27(1)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543292

RESUMO

At fertilization in mice and humans, the activation of the egg is caused by a series of repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta)ζ that generates inositol-1,4,5-trisphophate (InsP3). Ca2+ oscillations and egg activation can be triggered in mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be effective in human eggs. Here, we have investigated the reason for this apparent difference using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI. Mouse eggs incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium. We tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs. There were no major differences in the Ca2+ store content between mouse and human eggs. However, we found that the ATP concentration was consistently higher in mouse compared to human eggs. When ATP levels were lowered in mouse eggs by incubation in pyruvate-free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these eggs, the ATP levels increased and Ca2+ oscillations were induced. This suggests that ATP modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest that human eggs may be unresponsive to Sr2+ medium because they have a lower level of cytosolic ATP.


Assuntos
Trifosfato de Adenosina/fisiologia , Sinalização do Cálcio , Cálcio/metabolismo , Óvulo/metabolismo , Estrôncio/metabolismo , Animais , Técnicas de Cultura de Células , Meios de Cultura , Feminino , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos
5.
Reproduction ; 160(1): V9-V11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485666

RESUMO

PLCzeta(ζ) initiates Ca2+ oscillations and egg activation at fertilization in mammals, but studies in mouse eggs fertilized by PLCζ knockout (KO) sperm imply that there is another slow acting factor causing Ca2+ release. Here, I propose a hypothesis for how this second sperm factor might cause Ca2+ oscillations in mouse eggs.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Fertilização , Óvulo/fisiologia , Fosfoinositídeo Fosfolipase C/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout
6.
J Cell Sci ; 132(13)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31182643

RESUMO

Mammalian eggs generate most of their ATP by mitochondrial oxidation of pyruvate from the surrounding medium or from fatty acids that are stored as triacylglycerols within lipid droplets. The balance between pyruvate and fatty acid oxidation in generating ATP is not established. We have combined coherent anti-Stokes Raman scattering (CARS) imaging with deuterium labelling of oleic acid to monitor turnover of fatty acids within lipid droplets of living mouse eggs. We found that loss of labelled oleic acid is promoted by pyruvate removal but minimised when ß-oxidation is inhibited. Pyruvate removal also causes a significant dispersion of lipid droplets, while inhibition of ß-oxidation causes droplet clustering. Live imaging of luciferase or FAD autofluorescence from mitochondria, suggest that inhibition of ß-oxidation in mouse eggs only leads to a transient decrease in ATP because there is compensatory uptake of pyruvate into mitochondria. Inhibition of pyruvate uptake followed by ß-oxidation caused a similar and successive decline in ATP. Our data suggest that ß-oxidation and pyruvate oxidation contribute almost equally to resting ATP production in resting mouse eggs and that reorganisation of lipid droplets occurs in response to metabolic demand.


Assuntos
Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Óvulo/metabolismo , Piruvatos/metabolismo , Coloração e Rotulagem , Trifosfato de Adenosina/biossíntese , Animais , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Análise Espectral Raman
7.
Int J Dev Biol ; 63(3-4-5): 93-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058306

RESUMO

Mammalian oocytes and early cleavage-stage embryos are critically dependent on their ˜100,000 mitochondria to develop from ovulation to compacted morula stage. They rely almost solely on oxidative phosphorylation of multiple intracellular substrates- namely pyruvate, fatty acids and glutamine- for production of ATP. Increasing evidence exists for the requirement of both fatty acids and pyruvate for mammalian developmental potential. Fatty acids are stored as neutral lipids in lipid droplets, which are liberated into the cytoplasm as free fatty acids and taken up into mitochondria for metabolism. Different mammalian species exhibit different amounts of stored and free lipid, while the types of lipid present tend to remain constant. It is thought that the amount of lipid contained in the oocytes of mammalian species reflects the extent of ß-oxidation, but it is unclear why large differences are seen in lipid content. Maternal high fat diet or obesity causes negative intracellular effects such as the ER stress response, and oxidative mitochondrial and DNA damage. While some mechanisms have been established, it is still unclear exactly how high fat leads to compromised oocyte and embryo quality. It is proposed that healthy mammalian oocyte mitochondria require a balance of pyruvate and fatty acid oxidation in order to maintain a low level of otherwise damaging ROS production. This balance is disrupted in conditions of excess or insufficient substrate.


Assuntos
Embrião de Mamíferos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Desenvolvimento Embrionário , Ácidos Graxos/metabolismo , Feminino , Fosforilação Oxidativa , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Biochem J ; 474(6): 1003-1016, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270562

RESUMO

Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.


Assuntos
Domínios C2 , Cálcio/metabolismo , Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/química , Mutação Puntual , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Bovinos , Feminino , Fertilização , Expressão Gênica , Humanos , Isoleucina/química , Isoleucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , RNA Complementar/administração & dosagem , RNA Complementar/genética , RNA Complementar/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
9.
Mol Hum Reprod ; 23(1): 54-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932551

RESUMO

STUDY QUESTION: Is it possible to improve clinical visualization of phospholipase C zeta (PLCζ) as a diagnostic marker of sperm oocyte activation capacity and male fertility? SUMMARY ANSWER: Poor PLCζ visualization efficacy using current protocols may be due to steric or conformational occlusion of native PLCζ, hindering antibody access, and is significantly enhanced using antigen unmasking/retrieval (AUM) protocols. WHAT IS KNOWN ALREADY: Mammalian oocyte activation is mediated via a series of intracellular calcium (Ca2+) oscillations induced by sperm-specific PLCζ. PLCζ represents not only a potential clinical therapeutic in cases of oocyte activation deficiency but also a diagnostic marker of sperm fertility. However, there are significant concerns surrounding PLCζ antibody specificity and detection protocols. STUDY DESIGN, SIZE DURATION: Two PLCζ polyclonal antibodies, with confirmed PLCζ specificity, were employed in mouse, porcine and human sperm. Experiments evaluated PLCζ visualization efficacy, and whether AUM improved this. Antibodies against two sperm-specific proteins [post-acrosomal WW-binding protein (PAWP) and acrosin] were used as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Aldehyde- and methanol-fixed sperm were subject to immunofluorescence analysis following HCl exposure (pH = 0.1-0.5), acid Tyrode's solution exposure (pH = 2.5) or heating in 10 mM sodium citrate solution (pH = 6.0). Fluorescence intensity of at least 300 cells was recorded for each treatment, with three independent repeats. MAIN RESULTS AND THE ROLE OF CHANCE: Despite high specificity for native PLCζ following immunoblotting using epitope-specific polyclonal PLCζ antibodies in mouse, porcine and human sperm, immunofluorescent visualization efficacy was poor. In contrast, sperm markers PAWP and acrosin exhibited relatively impressive results. All methods of AUM on aldehyde-fixed sperm enhanced visualization efficacy for PLCζ compared to visualization efficacy before AUM (P < 0.05 for all AUM interventions), but exerted no significant change upon PAWP or acrosin immunofluorescence following AUM. All methods of AUM enhanced PLCζ visualization efficacy in mouse and human methanol-fixed sperm compared to without AUM (P < 0.05 for all AUM interventions), while no significant change was observed in methanol-fixed porcine sperm before and after. In the absence of aldehyde-induced cross-linkages, such results suggest that poor PLCζ visualization efficacy may be due to steric or conformational occlusion of native PLCζ, hindering antibody access. Importantly, examination of sperm from individual donors revealed that AUM differentially affects observable PLCζ fluorescence, and the proportion of sperm exhibiting detectable PLCζ fluorescence in sperm from different males. LIMITATIONS, REASONS FOR CAUTION: Direct correlation of fertility outcomes with the level of PLCζ in the sperm samples studied was not available. Such analyses would be required in future to determine whether the improved methodology for PLCζ visualization we propose would indeed reflect fertility status. WIDER IMPLICATIONS OF THE FINDINGS: We propose that AUM alters conformational interactions to enhance PLCζ epitope availability and visualization efficacy, supporting prospective application of AUM to reduce misinterpretation in clinical diagnosis of PLCζ-linked male infertility. Our current results suggest that it is perhaps prudent that previous studies investigating links between PLCζ and fertility parameters are re-examined in the context of AUM, and may pave the way for future work to answer significant questions such as how PLCζ appears to be kept in an inactive form in the sperm. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTERESTS: J.K. is supported by a Health Fellowship award from the National Institute for Social Care and Health Research (NISCHR). M.N. is supported by a Marie Curie Intra-European Research Fellowship award. This work was also partly funded by a research grant from Cook Medical Technologies LLC. There are no competing financial interests to declare.


Assuntos
Imunofluorescência/normas , Infertilidade Masculina/enzimologia , Fosfoinositídeo Fosfolipase C/análise , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/enzimologia , Acrosina/genética , Acrosina/imunologia , Animais , Anticorpos/química , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Expressão Gênica , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Oócitos/citologia , Oócitos/fisiologia , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/imunologia , Ligação Proteica , Conformação Proteica , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/imunologia , Espermatozoides/patologia , Suínos , Fixação de Tecidos/métodos
10.
Physiol Rev ; 96(1): 127-49, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26631595

RESUMO

The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca(2+) concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca(2+) observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca(2+) increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca(2+) increase by initiating Ca(2+) release from intracellular Ca(2+) stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca(2+) oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca(2+) oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.


Assuntos
Sinalização do Cálcio , Comunicação Celular , Fertilidade , Oócitos/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/enzimologia , Animais , Feminino , Humanos , Masculino , Fosfoinositídeo Fosfolipase C/química , Conformação Proteica , Relação Estrutura-Atividade
11.
J Biol Chem ; 290(49): 29519-30, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26429913

RESUMO

Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca(2+) oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca(2+) oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca(2+) oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca(2+) sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca(2+) frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca(2+) oscillation inducing activity.


Assuntos
Membrana Celular/metabolismo , Motivos EF Hand , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/enzimologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cátions , Feminino , Hidrólise , Lipossomos/química , Masculino , Camundongos , Modelos Teóricos , Mutação , Oócitos/citologia , Ácidos Fosfatídicos/metabolismo , Fosfatidilserinas/metabolismo , Plasmídeos/metabolismo , Ligação Proteica
12.
Mol Hum Reprod ; 21(10): 783-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187950

RESUMO

Artificial oocyte activation to overcome failed fertilization after intracytoplasmic sperm injection (ICSI) in human oocytes typically employs Ca(2+) ionophores to produce a single cytosolic Ca(2+) increase. In contrast, recombinant phospholipase Czeta (PLCζ) causes Ca(2+) oscillations indistinguishable from those occurring during fertilization, but remains untested for its efficacy in a scenario of ICSI fertilization failure. Here, we compare PLCζ with other activation stimuli in a mouse model of failed oocyte activation after ICSI, in which heat-treated sperm are injected into mouse oocytes. We show that increasing periods of 56 °C exposure of sperm produces a progressive loss of Ca(2+) oscillations after ICSI. The decrease in Ca(2+) oscillations produces a reduction in oocyte activation and embryo development to the blastocyst stage. We treated such oocytes that failed to activate after ICSI either with Ca(2+) ionophore, or with Sr(2+) media which causes Ca(2+) oscillations, or we injected them with recombinant human PLCζ. All these treatments rescued oocyte activation, although Sr(2+) and PLCζ gave the highest rates of development to blastocyst. When recombinant PLCζ was given to oocytes previously injected with control sperm, they developed normally to the blastocyst stage at rates similar to that after control ICSI. The data suggest that recombinant human PLCζ protein is an efficient means of rescuing oocyte activation after ICSI failure and that it can be effectively used even if the sperm already contains endogenous Ca(2+) releasing activity.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Infertilidade Masculina/fisiopatologia , Oócitos/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/farmacologia , Injeções de Esperma Intracitoplásmicas , Animais , Blastocisto , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização/efeitos dos fármacos , Temperatura Alta , Humanos , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Oócitos/fisiologia , Proteínas Recombinantes de Fusão/farmacologia , Injeções de Esperma Intracitoplásmicas/métodos , Estrôncio/farmacologia
13.
Mol Hum Reprod ; 21(9): 702-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116451

RESUMO

Mammalian oocyte activation is mediated by cytosolic calcium (Ca(2+)) oscillations initiated upon delivery of a putative 'sperm factor' by the fertilizing sperm. Previous studies suggest the identity of this sperm factor as the testis-specific phospholipase C-zeta (PLCζ). Recently, a post-acrosomal sheath WW domain-binding protein (PAWP) has been proposed as an alternative sperm factor candidate, following a report that human PAWP protein and cRNA elicited Ca(2+) oscillations in mouse and human oocytes. Those Ca(2+) oscillations were inhibited by a PAWP-derived peptide corresponding to a functional PPGY binding motif. Herein, using a series of human PAWP expression constructs, we demonstrate that both human PAWP protein and cRNA are, in our experiments, unable to elicit Ca(2+) release following microinjection into mouse oocytes. Parallel experiments performed with human PLCζ elicited the characteristic Ca(2+) oscillations present at mammalian fertilization, which produced oocyte activation and embryo development. Furthermore, sperm-induced Ca(2+) oscillations were not inhibited by the PAWP-derived PPGY peptide following in vitro fertilization or intracytoplasmic sperm injection. Thus, the functional disparity with PLCζ leads us to conclude that human PAWP is neither sufficient nor necessary for the Ca(2+) oscillations that initiate mammalian oocyte activation at fertilization.


Assuntos
Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Oócitos/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/genética , Células Cultivadas , Feminino , Fertilização in vitro , Técnicas de Transferência de Genes , Humanos , Técnicas de Maturação in Vitro de Oócitos , Masculino , Camundongos , Microinjeções , Oócitos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfoinositídeo Fosfolipase C/genética , Proteínas de Plasma Seminal/genética , Injeções de Esperma Intracitoplásmicas , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Fatores de Tempo
14.
Mol Hum Reprod ; 21(5): 383-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25722320

RESUMO

In mammals, egg activation is initiated by multiple cytosolic Ca(2+) transients (Ca(2+) oscillations) that are triggered following delivery of a putative sperm factor from the fertilizing sperm. The identity of this 'sperm factor' thus holds much significance, not only as a vital component in creating a new life, but also for its potential therapeutic and diagnostic value in human infertility. Recent data have emerged suggesting the sperm factor may be a post-acrosomal sheath WW domain-binding protein (PAWP). However, a significant body of research points to a testis-specific phospholipase C zeta (PLCζ) as the sperm factor. Herein, we examine the evidence presented in favour of PAWP in relation to PLCζ and the requisite physiological properties of the mammalian sperm factor.


Assuntos
Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário , Modelos Biológicos , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plasma Seminal/metabolismo , Interações Espermatozoide-Óvulo , Animais , Feminino , Fertilização , Humanos , Masculino , Transdução de Sinais , Espermatozoides/enzimologia , Espermatozoides/metabolismo
15.
Mol Hum Reprod ; 20(10): 938-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057041

RESUMO

Mature mammalian oocytes undergo a prolonged series of cytoplasmic calcium (Ca(2+)) oscillations at fertilization that are the cause of oocyte activation. The Ca(2+) oscillations in mammalian oocytes are driven via inositol 1,4,5-trisphosphate (IP3) generation. Microinjection of the sperm-derived phospholipase C-zeta (PLCζ), which generates IP3, causes the same pattern of Ca(2+) oscillations as observed at mammalian fertilization and it is thought to be the physiological agent that triggers oocyte activation. However, another sperm-specific protein, 'post-acrosomal WW-domain binding protein' (PAWP), has also been reported to elicit activation when injected into mammalian oocytes, and to produce a Ca(2+) increase in frog oocytes. Here we have investigated whether PAWP can induce fertilization-like Ca(2+) oscillations in mouse oocytes. Recombinant mouse PAWP protein was found to be unable to hydrolyse phosphatidylinositol 4,5-bisphosphate in vitro and did not cause any detectable Ca(2+) release when microinjected into mouse oocytes. Microinjection with cRNA encoding either the untagged PAWP, or yellow fluorescent protein (YFP)-PAWP, or luciferase-PAWP fusion proteins all failed to trigger Ca(2+) increases in mouse oocytes. The lack of response in mouse oocytes was despite PAWP being robustly expressed at similar or higher concentrations than PLCζ, which successfully initiated Ca(2+) oscillations in every parallel control experiment. These data suggest that sperm-derived PAWP is not involved in triggering Ca(2+) oscillations at fertilization in mammalian oocytes.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animais , Proteínas de Bactérias , Sinalização do Cálcio , Proteínas de Transporte/administração & dosagem , Feminino , Inositol 1,4,5-Trifosfato/biossíntese , Proteínas Luminescentes , Masculino , Camundongos , Microinjeções , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/administração & dosagem , RNA Complementar/administração & dosagem , RNA Complementar/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Plasma Seminal/administração & dosagem , Interações Espermatozoide-Óvulo
16.
Biochem Biophys Res Commun ; 450(3): 1204-11, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24769204

RESUMO

This review discusses the role that the sperm-specific phospholipase C zeta (PLCζ) is proposed to play during the fertilization of mammalian eggs. At fertilization, the sperm initiates development by causing a series of oscillations in cytosolic concentrations of calcium [Ca(2)] within the egg. PLCζ mimics the sperm at fertilization, causing the same pattern of Ca(2+) release as seen at fertilization. Introducing PLCζ into mouse eggs also mimics a number of other features of the way in which the fertilizing sperm triggers Ca(2+) oscillations. We discuss the localization of PLCζ within the egg and present a hypothesis about the localization of PLCζ within the sperm before the initiation of fertilization.


Assuntos
Sinalização do Cálcio/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Animais , Feminino , Fertilização/fisiologia , Humanos , Masculino , Camundongos , Modelos Biológicos , Óvulo/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/fisiologia
17.
J Cell Sci ; 127(Pt 12): 2749-60, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24741069

RESUMO

Egg activation at fertilization in mammals is initiated by prolonged Ca(2+) oscillations that trigger the completion of meiosis and formation of pronuclei. A fall in mitogen-activated protein kinase (MAPK) activity is essential for pronuclear formation, but the precise timing and mechanism of decline are unknown. Here, we have measured the dynamics of MAPK pathway inactivation during fertilization of mouse eggs using novel chemiluminescent MAPK activity reporters. This reveals that the MAPK activity decrease begins during the Ca(2+) oscillations, but MAPK does not completely inactivate until after pronuclear formation. The MAPKs present in eggs are Mos, MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) and MAPK3 and MAPK1 (ERK1 and ERK2, respectively). Notably, the MAPK activity decline at fertilization is not explained by upstream destruction of Mos, because a decrease in the signal from a Mos-luciferase reporter is not associated with egg activation. Furthermore, Mos overexpression does not affect the timing of MAPK inactivation or pronuclear formation. However, the late decrease in MAPK could be rapidly reversed by the protein phosphatase inhibitor, okadaic acid. These data suggest that the completion of meiosis in mouse zygotes is driven by an increased phosphatase activity and not by a decline in Mos levels or MEK activity.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óvulo/enzimologia , Animais , Sinalização do Cálcio , Inibidores Enzimáticos/farmacologia , Feminino , Fertilização , Genes Reporter , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Ácido Okadáico/farmacologia , Proteínas Oncogênicas v-mos/genética , Proteínas Oncogênicas v-mos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Espermatozoides/fisiologia
18.
Open Biol ; 4: 130206, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24718596

RESUMO

Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Hidrozoários/metabolismo , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Hidrozoários/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Proteínas Luminescentes/classificação , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Óvulo/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência
19.
Mol Hum Reprod ; 20(6): 489-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24478462

RESUMO

A sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca(2+) oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca(2+) oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca(2+) signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF-hand domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca(2+) dependence of generating cytoplasmic Ca(2+) oscillations in mammalian oocytes by sperm PLCζ.


Assuntos
Cálcio/metabolismo , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Interações Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Adulto , Animais , Sinalização do Cálcio , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Fertilização in vitro , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Oócitos/citologia , Fosfoinositídeo Fosfolipase C/metabolismo , Estrutura Terciária de Proteína , Especificidade da Espécie , Espermatozoides/citologia
20.
FEBS Lett ; 587(22): 3609-16, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24157362

RESUMO

Significant evidence now supports the assertion that cytosolic calcium oscillations during fertilization in mammalian eggs are mediated by a testis-specific phospholipase C (PLC), termed PLC-zeta (PLCζ) that is released into the egg following gamete fusion. Herein, we describe the current paradigm of PLCζ in this fundamental biological process, summarizing recent important advances in our knowledge of the biochemical and physiological properties of this enzyme. We describe the data suggesting that PLCζ has distinct features amongst PLCs enabling the hydrolysis of its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2) at low Ca(2+) levels. PLCζ appears to be unique in its ability to target PIP2 that is present on intracellular vesicles. We also discuss evidence that PLCζ may be a significant factor in human fertility with potential therapeutic capacity.


Assuntos
Sinalização do Cálcio , Infertilidade/mortalidade , Oócitos/enzimologia , Fosfoinositídeo Fosfolipase C/fisiologia , Animais , Fertilização , Humanos , Infertilidade/terapia , Masculino , Oócitos/fisiologia , Fosfoinositídeo Fosfolipase C/química , Transporte Proteico , Espermatozoides/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA