Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(8): 082502, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683153

RESUMO

We present an apparatus for detection of cyclotron radiation yielding a frequency-based ß^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear ß decays. The cyclotron frequency of the radiating ß particles in a magnetic field is used to determine the ß energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of ß^{-}'s from ^{6}He and ß^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for ß spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic ß's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision ß-decay measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA