Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4063-4075, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38568862

RESUMO

Identifying optimal reaction coordinates for complex conformational changes and protein folding remains an outstanding challenge. This study combines collective variable (CV) discovery based on chemical intuition and machine learning with enhanced sampling to converge the folding free energy landscape of lasso peptides, a unique class of natural products with knot-like tertiary structures. This knotted scaffold imparts remarkable stability, making lasso peptides resistant to proteolytic degradation, thermal denaturation, and extreme pH conditions. Although their direct synthesis would enable therapeutic design, it has not yet been possible due to the improbable occurrence of spontaneous lasso folding. Thus, simulations characterizing the folding propensity are needed to identify strategies for increasing access to the lasso architecture by stabilizing the pre-lasso ensemble before isopeptide bond formation. Herein, harmonic linear discriminant analysis (HLDA) is combined with metadynamics-enhanced sampling to discover CVs capable of distinguishing the pre-lasso fold and converging the folding propensity. Intuitive CVs are compared to iterative rounds of HLDA to identify CVs that not only accomplish these goals for one lasso peptide but also seem to be transferable to others, establishing a protocol for the identification of folding reaction coordinates for lasso peptides.


Assuntos
Aprendizado de Máquina , Peptídeos , Dobramento de Proteína , Peptídeos/química , Simulação de Dinâmica Molecular , Termodinâmica , Análise Discriminante
2.
J Am Chem Soc ; 146(7): 4444-4454, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38166378

RESUMO

Lasso peptides make up a class of natural products characterized by a threaded structure. Given their small size and stability, chemical synthesis would offer tremendous potential for the development of novel therapeutics. However, the accessibility of the pre-folded lasso architecture has limited this advance. To better understand the folding process de novo, simulations are used herein to characterize the folding propensity of microcin J25 (MccJ25), a lasso peptide known for its antimicrobial properties. New algorithms are developed to unambiguously distinguish threaded from nonthreaded precursors and determine handedness, a key feature in natural lasso peptides. We find that MccJ25 indeed forms right-handed pre-lassos, in contrast to past predictions but consistent with all natural lasso peptides. Additionally, the native pre-lasso structure is shown to be metastable prior to ring formation but to readily transition to entropically favored unfolded and nonthreaded structures, suggesting that de novo lasso folding is rare. However, by altering the ring forming residues and appending thiol and thioester functionalities, we are able to increase the stability of pre-lasso conformations. Furthermore, conditions leading to protonation of a histidine imidazole side chain further stabilize the modified pre-lasso ensemble. This work highlights the use of computational methods to characterize lasso folding and demonstrates that de novo access to lasso structures can be facilitated by optimizing sequence, unnatural modifications, and reaction conditions like pH.


Assuntos
Bacteriocinas , Peptídeos , Conformação Proteica , Peptídeos/química , Bacteriocinas/química , Antibacterianos/química
3.
Proc Natl Acad Sci U S A ; 114(50): 13182-13187, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180426

RESUMO

POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Peptídeos/metabolismo , Prótons , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Xanthomonas/química , Xanthomonas/metabolismo
4.
J Chem Theory Comput ; 1(3): 484-93, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-26641515

RESUMO

Implicit solvent models are a standard tool for assessing the electrostatics of biomolecular systems. The accuracy of quantitative predictions, such as pKa values, transfer free energies, binding energies, and solvation forces, is strongly dependent on one's choice of continuum parameters: the solute charges, dielectric coefficient, and radii, which define the dielectric boundary. To ensure quantitative accuracy, these parameters can be benchmarked against explicit solvent simulations. Here we present two sets of optimized radii to define either abrupt or cubic-spline smoothed dielectric boundaries in Poisson-Boltzmann calculations of protein systems with AMBER (parm99) charges. Spline smoothing stabilizes the electrostatic potential at the molecular surface, allowing for continuum force calculations. Most implementations, however, require significantly different radii than the abrupt boundary surfaces. The optimal continuum radii are initially approximated from the solvent radial charge distribution surrounding each atom type. A genetic algorithm is then used to fine-tune the starting values to reproduce charging free energies measured from explicit solvent simulations. The optimized radii are tested on four protein-like polypeptides. The results show increased accuracy of molecular solvation energies and atomic forces relative to commonly used continuum parameter sets. These radii are suitable for Poisson-Boltzmann calculations with the AMBER force field and offer energetic congruence to any model that combines molecular mechanics and Poisson-Boltzmann solvation energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA