Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 35(10): 1831-1841, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043336

RESUMO

OBJECTIVE: To determine whether recombinant AMH (rAMH) could prevent post-transplant follicular depletion by acting on the stemness markers Oct-4, Sox2, and NANOG. MATERIALS AND METHODS: This was an experimental study where 12 ovariectomized nude mice were xenotransplanted with vitrified/warmed ovarian cortex obtained from a pre-pubertal girl and Alzet pumps delivering rAMH, or placebo (control), were inserted intra-abdominally. Previously vitrified/warmed ovarian cortex fragments were transplanted after 7 days and then harvested after 14 days from pump placement. We performed real-time RT-PCR analyses, ELISA for AMH, FSH, and estradiol, histologic measurement of ovarian follicles, and immunohistochemistry for Ki67 and TUNEL. The main outcome measures were serum levels and tissue expression of the parameters under investigation and follicle count. RESULTS: Serum AMH, FSH, and estradiol reflected post-ovariectomy profiles and were mildly influenced by rAMH administration. Ovarian cortex expression of AMH, AMH-R2, VEGF, GDF9, Oct-4, and Sox2 was lower in rAMH mice than in controls, while NANOG was upregulated. There was a non-significant decrease in primordial follicles after vitrification-warming, and xenotransplantation further decreased this number. There were lower cell replication and depressed apoptosis in the rAMH group. CONCLUSIONS: Administration of recombinant AMH in the peri-transplant period did not protect the initial follicular depletion but decreased apoptosis and cellular activation and regulated stem cell markers' tissue expression. These results aid our understanding of the inhibitory effects of AMH on follicular development and show the benefit of administering exogenous AMH at the time of pre-pubertal ovarian cortex transplant to protect the follicles from pre-activation and premature depletion.


Assuntos
Hormônio Antimülleriano/genética , Xenoenxertos/metabolismo , Folículo Ovariano/transplante , Ovário/transplante , Animais , Hormônio Antimülleriano/administração & dosagem , Hormônio Antimülleriano/sangue , Apoptose/genética , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Regulação da Expressão Gênica no Desenvolvimento , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/crescimento & desenvolvimento , Humanos , Camundongos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovariectomia , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fatores de Transcrição SOXB1/genética , Transplante Heterólogo , Vitrificação
2.
Nucleic Acid Ther ; 23(6): 379-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24083396

RESUMO

Catalytic oligonucleotides, known as DNAzymes, are a new class of nucleic acid-based gene therapy that have recently been used in preclinical animal studies to treat various cancers. In this study the systemic distribution, pharmacokinetics, and safety of intravenously administered anti-MMP (matrix metalloproteinase)-9 DNAzyme (AM9D) were determined in healthy FVB and in MMTV-polyoma virus middle T (PyMT) transgenic mice bearing mammary tumors. MMP-9 is known to be involved in tumor cell development, angiogenesis, invasion, and metastasis. Sulfur-35 ((35)S) labeled ([(35)S]-AM9D) administered intravenously, without the use of carrier molecules, to healthy and mammary tumor bearing MMTV-PyMT transgenic mice distributed to all major organs. The order of percentages of [(35)S]-AM9D accumulation in different organs of healthy and MMTV-PyMT mice were blood>liver>kidney>lung>spleen>heart and mammary tumor>blood≈liver>kidney>spleen>lung>heart, respectively. The amount of AM9D accumulated in mammary tumors 2 hours post injection was 0.6% and 0.2% higher than in either blood or liver, respectively, and its rate of initial clearance from mammary tissue was at least 50% slower than the other organs. Approximately 43% of the delivered dosage of [(35)S]-AM9D was cleared from the system via feces and urine over a period of 72 hours. No evidence of acute or chronic cytotoxicity, local or widespread, associated with AM9D treatment (up to 75 mg AM9D /kg of body weight) was observed in the organs examined. These data suggest that DNAzyme in general and AM9D in particular can be used systemically as a therapeutic agent to treat patients with breast cancer or other metastatic and surgically inaccessible tumors.


Assuntos
Antineoplásicos/administração & dosagem , DNA Catalítico/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Metaloproteinase 9 da Matriz/metabolismo , Administração Intravenosa , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , DNA Catalítico/farmacocinética , DNA Catalítico/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Transgênicos , Polyomavirus , Distribuição Tecidual
3.
Steroids ; 76(1-2): 193-203, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21070794

RESUMO

We have synthesized 3ß,21-dihydroxypregna-5,7-dien-20-one (21(OH) 7DHP) and used UVB radiation to induce its photoconversion to analogues of vitamin D (pD), lumisterol (pL) and tachysterol (pT). The number and character of the products and the dynamics of the process were dependent on the UVB dose. The main products: pD and pT compounds were characterized by UV absorption, MS and NMR spectroscopy after RP-HPLC chromatography. In addition, formation of multiple oxidized derivatives of the primary products was detected and one of these derivatives was characterized as oxidized 21-hydroxyisotachysterol compound (21(OH)oxy-piT). These newly synthesized compounds inhibited growth of human melanoma cells in a dose dependent manner, with greater or equal potency to calcitriol. 3ß,21-Dihydroxy-9ß,10α-pregna-5,7-dien-20-one (21(OH)pL) and 21(OH)oxy-piT had higher potency against pigmented melanoma cells, while the EC(50) for compounds 21(OH)7DHP and (5Z,7E)-3ß,21-dihydroxy-9,10-secopregna-5,7,10(19)-trien-20-one (21(OH)pD) were similar in both pigmented and non-pigmented cells. Moreover, 21(OH)7DHP and its derivatives inhibited proliferation of human epidermal HaCaT keratinocytes, albeit at a lower activity compared to melanoma cells. Importantly, 21(OH)7DHP derivatives strongly inhibited the colony formation of human melanoma cells with 21(OH)pD being the most potent. The potential mechanism of action of newly synthesized compounds was similar to that mediated by 1,25(OH)(2)D(3) and involved ligand-induced translocation of vitamin D receptor into the nucleus. In summary, we have characterized for the first time products of UVB-induced conversion of 21(OH)7DHP and documented that these compounds have selective, inhibitory effects on melanoma cells.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Pregnadienodiois/farmacologia , Secoesteroides/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/patologia , Conformação Molecular , Fotoquímica , Pregnadienodiois/síntese química , Pregnadienodiois/química , Secoesteroides/síntese química , Secoesteroides/química , Estereoisomerismo , Raios Ultravioleta
4.
Steroids ; 74(2): 218-28, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19028513

RESUMO

Pregna-5,7-dienes and their hydroxylated derivatives can be formed in vivo when there is a deficiency in 7-dehydrocholesterol (7-DHC) Delta-reductase function, e.g., Smith-Lemli-Opitz syndrome (SLOS). Ultraviolet B (UVB) radiation induces photoconversion of 7-DHC to vitamin D3, lumisterol3 and tachysterol3. Two epimers (20R and 20S) of pregna-5,7-diene-3beta,17alpha,20-triol (4R and 4S, respectively) were synthesized and their UVB photo-conversion products identified as corresponding 9,10-secosteroids with vitamin D-like and tachysterol-like structures, and 5,7-dienes with inverted configuration at C-9 and C-10 (lumisterol-like). The number and character of the products and the dynamics of the process were dependent on the UVB dose. At high UVB doses, the formation of multiple oxidized derivatives of the primary products, and the formation of 5,7,9(11)-triene, were observed. The production of vitamin D-like, tachysterol-like and lumisterol-like derivatives was also observed in human skin treated with 4R and 4S, and subjected to UV irradiation, as shown by RP-HPLC. Newly synthesized compounds inhibited melanoma growth in dose dependent manner, and some of them showed equal or higher potency than 1,25(OH)2D3. In summary, we have characterized for the first time the products of UV induced conversion of pregna-5,7-diene-3beta,17alpha,20-triols and documented that the newly synthesized compounds have antiproliferative properties against melanoma cells.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Fotólise/efeitos da radiação , Pregnadienos/química , Pregnadienos/farmacologia , Pregnadienotrióis/química , Pregnadienotrióis/síntese química , Pregnadienotrióis/farmacologia , Acetilação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Pregnadienos/síntese química , Pregnadienos/metabolismo , Pregnadienotrióis/metabolismo , Secoesteroides/análise , Secoesteroides/química , Pele/metabolismo , Pele/efeitos da radiação , Estereoisomerismo , Raios Ultravioleta
5.
Photochem Photobiol Sci ; 7(12): 1570-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19037511

RESUMO

Calcitriol (3beta,5Z,7E)-9,10-secocholesta-5,7,10(19)-trien-1alpha,3beta,25-triol) is a powerful oncostatic form of vitamin D3 that is of limited clinical utility due to hypercalcemic (toxic) effects. Since the removal of the side chain reduces or eliminates the calcemic activity of vitamin D3, secosteroidal compounds lacking or with a shortened side chain are good candidates for anti-cancer drugs. In addition, 5,7-steroidal dienes without a side chain can be generated in vivo under pathological conditions. A series of androsta- and pregna-5,7-dienes was efficiently synthesized from their respective 3-acetylated 5-en precursors by bromination-dehydrobromination and deacetylation reactions. Ultraviolet B (UVB) irradiation was used to generate corresponding 9,10-secosteroids with vitamin D-like structures. Additional products with tachysterol-like (T-like) structures or 5,7-dienes with inverted configuration at C-9 and C-10 (lumisterol, L-like) were also detected. Different doses of UVB resulted in formation of various products. At low doses, previtamin D-, T- or L-like compounds were formed as the main products, while higher doses induced further isomerization, with formation of potentially oxidized derivatives. In summary, we describe dynamic UVB induced conversion of androsta- and pregna-5,7-dienes into vitamin D-like compounds and their rearranged analogues; additionally novel T-like and L-like structures were also produced and characterized. Further biological evaluation of newly synthesized compounds should help to select the best candidate(s) for potential treatment of hyperproliferative diseases including cancer.


Assuntos
Androstadienos/química , Pregnadienos/química , Androstadienos/síntese química , Androstadienos/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Fotólise , Pregnadienos/síntese química , Pregnadienos/efeitos da radiação , Raios Ultravioleta
6.
Leuk Res ; 31(8): 1085-95, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17187856

RESUMO

Bcr-Abl activity in chronic myelogenous leukemia (CML) results in dysregulated cell proliferation and resistance against multiple cytotoxic agents due to the constitutive activation of proliferative signaling pathways. Currently, the most effective treatment of CML is the inhibition of Bcr-Abl activity by imatinib mesylate (Gleevec). Imatinib efficacy is limited by development of resistance through either expression of Bcr-Abl variants that bind imatinib less avidly, increased expression of Bcr-Abl, or expression of multidrug transport proteins. N-Benzyladriamycin-14-valerate (AD 198) is a novel antitumor PKC activating agent that triggers rapid apoptosis through PKC-delta activation and mitochondrial depolarization in a manner that is unaffected by Bcl-2 expression. We demonstrate that Bcr-Abl expression does not confer resistance to AD 198. Further, AD 198 rapidly induces Erk1/2 and STAT5 phosphorylation prior to cytochrome c release from mitochondria, indicating that proliferative pathways are active even as drug-treated cells undergo apoptosis. At sub-cytotoxic doses, AD 198 and its cellular metabolite, N-benzyladriamycin (AD 288) sensitize CML cells to imatinib through a supra-additive reduction in the level of Bcr-Abl protein expression. These results suggest that AD 198 is an effective treatment for CML both in combination with imatinib and alone against imatinib-resistant CML cells.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Benzamidas , Citocromos c/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/genética , Células HL-60/efeitos dos fármacos , Células HL-60/metabolismo , Células HL-60/patologia , Humanos , Mesilato de Imatinib , Immunoblotting , Células K562/efeitos dos fármacos , Células K562/metabolismo , Células K562/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo
7.
Anticancer Drugs ; 17(5): 495-502, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16702805

RESUMO

Unlike nuclear-targeted anthracyclines, the extranuclear-targeted doxorubicin congener, N-benzyladriamycin-14-valerate (AD 198), does not interfere with normal topoisomerase II activity, but binds to the C1b regulatory domain of conventional and novel isoforms of protein kinase C (PKC). The resulting interaction leads to enzyme activation and rapid apoptosis in a variety of mammalian cell lines through a pathway involving mitochondrial events such as membrane depolarization (Deltapsim) and cytochrome c release. Unlike other triggers of apoptosis, AD 198-mediated apoptosis is unimpeded by the expression of Bcl-2 and Bcl-XL. We have further examined AD 198-induced apoptosis in 32D.3 mouse myeloid cells to determine how the anti-apoptotic effects of Bcl-2 are circumvented. The PKC-delta inhibitor, rottlerin, and transfection with a transdominant-negative PKC-delta expression vector both inhibit AD 198 cytotoxicity through inhibition of Deltapsim and cytochrome c release. While the pan-caspase inhibitor Z-VAD-FMK blocks AD 198-induced PKC-delta cleavage, however, it does not inhibit Deltapsim and cytochrome c release, indicating that AD 198 induces PKC-delta holoenzyme activation to achieve apoptotic mitochondrial effects. AD 198-mediated Deltapsim and cytochrome c release are also unaffected by cellular treatment with either the mitochondrial permeability transition pore complex (PTPC) inhibitor cyclosporin A or the Ca chelators EGTA and BAPTA-AM. These results suggest that AD 198 activates PKC-delta holoenzyme, resulting in Deltapsim and cytochrome c release through a mechanism that is independent of both PTPC activation and Ca flux across the mitochondria. PTPC-independent mitochondrial activation by AD 198 is consistent with the inability of Bcl-2 and Bcl-XL expression to block AD 198-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/fisiologia , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células Precursoras de Granulócitos/efeitos dos fármacos , Células Precursoras de Granulócitos/metabolismo , Células Precursoras de Granulócitos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo
8.
Mol Pharmacol ; 65(4): 1038-47, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15044634

RESUMO

Nuclear factor kappaB (NF-kappaB) has been implicated in inducible chemoresistance against anthracyclines. In an effort to improve the cytotoxicity of anthracyclines while reducing their cardiotoxic effects, we have developed a novel class of extranuclear-localizing 14-O-acylanthracyclines that bind to the phorbol ester/diacylglycerol-binding C1b domain of conventional and novel protein kinase C (PKC) isoforms, thereby promoting an apoptotic response. Because PKCs have been shown to be involved in NF-kappaB activation, in this report, we determined the mechanism of NF-kappaB activation by N-benzyladriamycin-14-valerate (AD 198) and N-benzyladriamycin-14-pivalate (AD 445), two novel 14-O-acylanthracylines. We show that the induction of NF-kappaB activity in response to drug treatment relies on the activation of PKC-delta and NF-kappaB-activating kinase (NAK), independent of ataxia telengectasia mutated and p53 activities. In turn, NAK activates the IKK complex through phosphorylation of the IKK-2 subunit. We find that neither NF-kappaB activation nor ectopic expression of Bcl-X(L) confers protection from AD 198-induced cell killing. Overall, our data indicate that activation of novel PKC isoforms by cytoplasmic-targeted 14-O-acylanthracyclines promotes an apoptotic response independent of DNA damage, which is unimpeded by inducible activation of NF-kappaB.


Assuntos
Antraciclinas/farmacologia , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Dano ao DNA , Proteínas de Ligação a DNA , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Ativação Enzimática , Quinase I-kappa B , Camundongos , Proteína Quinase C-delta , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor , Proteína bcl-X
9.
Mol Cell Biol ; 24(5): 1823-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966265

RESUMO

We have identified a novel pathway of ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) signaling that results in nuclear factor kappaB (NF-kappaB) activation and chemoresistance in response to DNA damage. We show that the anthracycline doxorubicin (DOX) and its congener N-benzyladriamycin (AD 288) selectively activate ATM and DNA-PK, respectively. Both ATM and DNA-PK promote sequential activation of the mitogen-activated protein kinase (MAPK)/p90(rsk) signaling cascade in a p53-independent fashion. In turn, p90(rsk) interacts with the IkappaB kinase 2 (IKK-2) catalytic subunit of IKK, thereby inducing NF-kappaB activity and cell survival. Collectively, our findings suggest that distinct members of the phosphatidylinositol kinase family activate a common prosurvival MAPK/IKK/NF-kappaB pathway that opposes the apoptotic response following DNA damage.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologia , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Sobrevivência Celular , Proteína Quinase Ativada por DNA , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Quinase I-kappa B , Camundongos , Células NIH 3T3 , Proteínas Nucleares , Subunidades Proteicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor
10.
Mol Cancer Ther ; 1(7): 469-81, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12479265

RESUMO

Bcl-2 inhibits apoptosis induced by numerous antitumor drugs, including doxorubicin and daunorubicin and is, thus, a major impediment to successful cancer chemotherapy. Here, we report the ability of a novel family of nonnuclear targeted anthracyclines to induce rapid apoptosis in cells despite Bcl-2 or Bcl-X(L) expression. Typified by N-benzyladriamycin-14-valerate (AD 198) and N-benzyladriamycin-14-pivalate (AD 445), this family of compounds binds to the C1 regulatory domain of protein kinase C (PKC), competitively inhibits phorbol ester binding in cell-free studies, and induces PKC translocation in intact cells. PKC-delta has an established role as a pro-apoptotic protein through the association of the holoenzyme or catalytic fragment with mitochondria. In proliferating 32D.3 myeloid cells, or in 32D.3 cells engineered to overexpress Bcl-2, substantial levels of PKC-delta are associated with mitochondria. However, after a 1-h exposure to 5 microM AD 198, cytochrome c release, caspase-3 activation, poly(ADP-ribose) polymerase (PARP) cleavage, PKC-delta cleavage, and DNA fragmentation are observed. Pretreatment of 32D.3 cells with the selective PKC-delta inhibitor, rottlerin, but not the general PKC inhibitor, GF 109203X, or PKC-alpha and -beta inhibitor, Gö 6976, delayed the 50% cell kill to >24 h for control and Bcl-2 overexpressing 32D.3 cells treated with 5 microM AD 198. Rottlerin delayed PKC-delta and PARP cleavage to >20 h post-drug exposure and also delayed mitochondrial membrane depolarization. In contrast, the pan-caspase inhibitor Z-Val-Ala-Asp-CH2F blocked PKC-delta and PARP cleavage, but not mitochondrial membrane depolarization. These results suggest that AD 198 induces mitochondrial-dependent apoptosis in 32D.3 cells by activating PKC-delta holoenzyme on mitochondria, which, in turn, overrides the antiapoptotic effects of Bcl-2.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Transporte Biológico , Caspase 3 , Caspases/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Grupo dos Citocromos c/metabolismo , Fragmentação do DNA , Relação Dose-Resposta a Droga , Doxorrubicina/análogos & derivados , Humanos , Immunoblotting , Membranas Intracelulares/metabolismo , Isoenzimas/metabolismo , Camundongos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Modelos Químicos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Quinase C-alfa , Proteína Quinase C-delta , Estrutura Terciária de Proteína , Transdução de Sinais , Frações Subcelulares , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas
11.
Mol Cancer Ther ; 1(7): 483-92, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12479266

RESUMO

Anthracycline antibiotics like doxorubicin (DOX) are known to exert their antitumor effects primarily via DNA intercalation and topoisomerase II inhibition. By contrast, the noncross-resistant cytoplasmically localizing DOX analogue, N-benzyladriamycin-14-valerate (AD 198), only weakly binds DNA and does not inhibit topoisomerase II, yet it displays superior antitumor activity, strongly suggesting a distinct cytotoxic mechanism. In recent modeling studies, we reported a structural similarity between AD 198 and commonly accepted ligands for the C1-domain of protein kinase C (PKC), and we hypothesized that the unique biological activity of AD 198 may derive, in part, through this kinase. Consistent with this hypothesis, the present biochemical studies demonstrate that AD 198 competes with [3H]phorbol-12,13-dibutyrate ([3H]PDBu) for binding to phorbol-responsive PKC isoforms, the isolated C1b domain of PKC-delta (delta C1b), and the nonkinase phorbol ester receptor, beta2-chimaerin. In NIH/3T3 cells, AD 198 competitively blocks PKC activation by C1-ligands. Importantly, neither DOX nor N-benzyladriamycin, the principal AD 198 metabolite, inhibits basal or phorbol-stimulated PKC activity or appreciably competes for [3H]PDBu binding. In CEM cells, structure activity studies with 14-acyl congeners indicate that the rapid induction of apoptosis correlates with competition for [3H]PDBu binding, strongly implicating phorbol-binding proteins in drug activity. Collectively, these studies support the conclusion that AD 198 is a C1-ligand and that C1-ligand receptors are selective drug targets. These studies provide the impetus for continuing efforts to understand the molecular basis for the unique biological activity of AD 198 and provide for the design of analogues with improved affinity for C1-domains and potentially greater antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Proteína Quinase C/química , Células 3T3 , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/análogos & derivados , Cinética , Camundongos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA