Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577544

RESUMO

Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.

2.
Zoology (Jena) ; 122: 58-62, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363806

RESUMO

In mammals, insulin primarily lowers plasma glucose (PGlu) by increasing its uptake into tissues. Studies have also shown that insulin lowers PGlu in mammals by modulating glomerular filtration rate (GFR). Birds have naturally high PGlu and, although insulin administration significantly decreases glucose concentrations, birds are resistant to insulin-mediated glucose uptake into tissues. Since prior work has not examined the effects of insulin on GFR in birds, the purpose of the present study was to assess whether insulin can augment renal glucose excretion and thereby lower PGlu. Therefore, the hypothesis of the present study was that insulin lowers PGlu in birds by augmenting GFR, as estimated by inulin clearance (CIn). Adult mourning doves (Zenaida macroura) were used as experimental animals. Doves were anesthetized and the brachial vein was cannulated for administration of [14C]-inulin and insulin and the brachial artery was cannulated for blood collections. Ureteral urine was collected via a catheter inserted into the cloaca. Ten minutes following administration of exogenous insulin (400µg/kg body mass, i.v.) plasma glucose was significantly decreased (p=0.0003). Twenty minutes following insulin administration, increases in GFR (p=0.016) were observed along with decreases in urine glucose concentrations (p=0.008), glucose excretion (p=0.028), and the fractional excretion of glucose (p=0.003). Urine flow rate (p=0.051) also tended to increase after administration of insulin. These data demonstrate a significant role for insulin in modulating GFR in mourning doves, which may in part explain the lower PGlu measured following insulin administration.


Assuntos
Glicemia , Columbiformes/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Insulina/administração & dosagem , Inulina
3.
J Nutr Metab ; 2015: 157520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185688

RESUMO

Chronic high fat feeding is correlated with diabetes and kidney disease. However, the impact of short-term high fat diets (HFD) is not well-understood. Six weeks of HFD result in indices of metabolic syndrome (increased adiposity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hyperleptinemia, and impaired endothelium-dependent vasodilation) compared to rats fed on standard chow. The hypothesis was that short-term HFD would induce early signs of renal disease. Young male Sprague-Dawley rats were fed either HFD (60% fat) or standard chow (5% fat) for six weeks. Morphology was determined by measuring changes in renal mass and microstructure. Kidney function was measured by analyzing urinary protein, creatinine, and hydrogen peroxide (H2O2) concentrations, as well as plasma cystatin C concentrations. Renal damage was measured through assessment of urinary oxDNA/RNA concentrations as well as renal lipid peroxidation, tumor necrosis factor alpha (TNFα), and interleukin 6 (IL-6). Despite HFD significantly increasing adiposity and renal mass, there was no evidence of early stage kidney disease as measured by changes in urinary and plasma biomarkers as well as histology. These findings suggest that moderate hyperglycemia and inflammation produced by short-term HFD are not sufficient to damage kidneys or that the ketogenic HFD may have protective effects within the kidneys.

4.
Comp Biochem Physiol B Biochem Mol Biol ; 143(1): 126-31, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16330231

RESUMO

Substrate utilization by English sparrow skeletal muscle has been extensively studied in our lab. However, there are few published studies on the muscle fiber composition of English sparrow wing and gastrocnemius muscles. The objective of the present study was to examine the fiber type composition of a variety of muscles in the English sparrow. The classification of a muscle fiber as fast glycolytic, slow oxidative, or fast oxidative glycolytic provides insight into the physiological function of muscles. Therefore, we completed mATPase and NADH stains on four muscles of the sparrow wing, as well as the gastrocnemius muscle, to characterize these muscle fiber types. Results show that the fibers of extensor digitorum communis, extensor metacarpi ulnaris, and extensor metacarpi radialis are homogeneous fast oxidative. The fibers of the supinator are homogeneous fast oxidative in 62.5% of samples, and heterogeneous (45.2% fast oxidative, 54.8% fast nonoxidative) in 37.5% of samples. Whereas the gastrocnemius muscle fibers are heterogeneous (10% fast oxidative, 64% fast nonoxidative, 26% slow oxidative) in all muscles examined.


Assuntos
Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Músculo Esquelético/anatomia & histologia , Pardais/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Fibras Musculares de Contração Rápida/classificação , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/classificação , Fibras Musculares de Contração Lenta/metabolismo , Miosinas/metabolismo , NAD/metabolismo , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA