Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Lipid Res ; 65(1): 100480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008259

RESUMO

Diacylglycerol kinase-ε (DGKε) catalyzes phosphorylation of diacylglycerol to phosphatidic acid with a unique specificity toward 1-stearoyl-2-arachidonoyl-sn-glycerol, which is a backbone of phosphatidylinositol (PI). Owing to this specificity, DGKε is involved in the PI cycle maintaining the cellular level of phosphorylated PI derivatives of signaling activity and was also found crucial for lipid metabolism. DGKε dysfunction is linked with the development of atypical hemolytic uremic syndrome (aHUS) and possibly other human diseases. Despite the DGKε significance, data on its regulation by cotranslational and/or post-translational modifications are scarce. Here, we report that DGKε is S-palmitoylated at Cys38/40 (mouse/human DGKε) located in the cytoplasmic end of its N-terminal putative transmembrane fragment. The S-palmitoylation of DGKε was revealed by metabolic labeling of cells with a palmitic acid analogue followed by click chemistry and with acyl-biotin and acyl-polyethylene glycol exchange assays. The S-acyltransferases zDHHC7 (zinc finger DHHC domain containing) and zDHHC17 and the zDHHC6/16 tandem were found to catalyze DGKε S-palmitoylation, which also increased the DGKε abundance. Mouse DGKε-Myc ectopically expressed in human embryonic kidney 293 cells localized to the endoplasmic reticulum where zDHHC6/16 reside and in small amounts also to the Golgi apparatus where zDHHC7 and zDHHC17 are present. The Cys38Ala substitution upregulated, whereas hyperpalmitoylation of wild-type DGKε reduced the kinase activity, indicating an inhibitory effect of the Cys38 S-palmitoylation. In addition, the substitution of neighboring Pro31 with Ala also diminished the activity of DGKε. Taken together, our data indicate that S-palmitoylation can fine-tune DGKε activity in distinct cellular compartments, possibly by affecting the distance between the kinase and its substrate in a membrane.


Assuntos
Cisteína , Diacilglicerol Quinase , Camundongos , Humanos , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Transdução de Sinais , Citosol/metabolismo , Metabolismo dos Lipídeos
2.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884899

RESUMO

Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and ß-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.


Assuntos
Fígado/metabolismo , Óleo de Palmeira/administração & dosagem , Ácido Palmítico/química , Proteômica/métodos , Óleo de Soja/administração & dosagem , Aminoácidos/metabolismo , Animais , Suplementos Nutricionais , Ácidos Graxos/análise , Homeostase , Fígado/efeitos dos fármacos , Macrófagos Peritoneais/química , Masculino , Espectrometria de Massas , Camundongos , Óleo de Palmeira/química , Óleo de Palmeira/farmacologia , Óleo de Soja/farmacologia
3.
Appl Radiat Isot ; 167: 109439, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33086151

RESUMO

BACKGROUND: Currently, radiotherapy is one of the most popular choices in clinical practice for the treatment of cancers. While it offers a fantastic means to selectively kill cancer cells, it can come with a host of side effects. To minimize such side effects, and maximize the therapeutic effect of the treatment, we propose the use of targeted radiopharmaceuticals. In the study presented herein, we investigate two synthetic pathways of dextran-based radiocarriers and provide their key chemical and physical properties: stability of the bonding of chelating agent and tertiary structure of obtained formulations and its influence on biological properties. Additionally, PSMA small molecule inhibitor was attached and quantified using DELFIA fluorescence assay. Finally, biological properties and radiolabeling yield were studied using confocal microscopy and ITLC-SG chromatography. RESULTS: Two types of Dex-conjugates - micelle-like nanoparticles (NPs) and non-folded conjugates - were successfully generated and shown to exhibit cellular effects. The tertiary structure of the conjugates was found to influence the selectivity of PSMA and mediate cell binding as well as cellular uptake mechanisms. NPs were shown to be internalized by other, non - PSMA mediated channels. Simultaneously, the uptake of non-folded conjugates required PSMA inhibitor to pass through cell membrane. The radiochemical yield of NHS coupled DOTA chelator was between 91.3 and 97.7% while the TCT-amine bonding showed higher stability and gave the yields of 99.8-100%. CONCLUSIONS: We obtained novel, dextran-based radioconjugates, and presented a superior method of chelator binding, resulting in exquisite radiochemical properties as well as selective cross-membrane transport.


Assuntos
Antígenos de Superfície/metabolismo , Dextranos/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Quelantes/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-31678513

RESUMO

Bacterial lipopolysaccharide (LPS) is recognized by CD14 protein and the Toll-like receptor (TLR)4/MD2 complex localized in the plasma membrane of immune cells. TLR4 triggers two signaling pathways engaging the MyD88 and TRIF adaptor proteins which lead to production of various pro-inflammatory cytokines. These processes are likely to be modulated by sphingomyelin, as the CD14 - TLR4 interaction takes place in plasma membrane rafts enriched in this lipid. To verify this assumption, we analyzed the influence of tricyclodecane-9-yl xanthogenate (D609), which was proven here to be an SMS inhibitor, and silencing of sphingomyelin synthase (SMS) 1 and/or SMS2 on LPS-induced signaling in macrophages. LPS up-regulated the expression and activity of SMS while exposure to D609 or silencing of SMS1 and SMS2 counteracted this action and led (except for SMS2 silencing) to a depletion of sphingomyelin in cells. Concomitantly, the MyD88- and TRIF-dependent signaling pathways of TLR4 were inhibited with the latter being especially sensitive to the reduction of the SMS1 and/or SMS2 activity. The D609 treatment and SMS1 and/or SMS2 depletion all reduced the level of CD14 protein in cells, which likely was an important determinant of the reduction of the LPS-induced pro-inflammatory responses.


Assuntos
Transdução de Sinais/imunologia , Esfingomielinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Norbornanos , Cultura Primária de Células , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos , Tionas/farmacologia , Receptor 4 Toll-Like/genética , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
5.
Mol Biol Cell ; 28(8): 1147-1159, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228554

RESUMO

Lipopolysaccharide (LPS) is the component of Gram-negative bacteria that activates Toll-like receptor 4 (TLR4) to trigger proinflammatory responses. We examined the involvement of Lyn tyrosine kinase in TLR4 signaling of macrophages, distinguishing its catalytic activity and intermolecular interactions. For this, a series of Lyn-GFP constructs bearing point mutations in particular domains of Lyn were overexpressed in RAW264 macrophage-like cells or murine peritoneal macrophages, and their influence on LPS-induced responses was analyzed. Overproduction of wild-type or constitutively active Lyn inhibited production of TNF-α and CCL5/RANTES cytokines and down-regulated the activity of NFκB and IRF3 transcription factors in RAW264 cells. The negative influence of Lyn was nullified by point mutations of Lyn catalytic domain or Src homology 2 (SH2) or SH3 domains or of the cysteine residue that undergoes LPS-induced palmitoylation. Depending on the cell type, overproduction of those mutant forms of Lyn could even up-regulate LPS-induced responses, and this effect was reproduced by silencing of endogenous Lyn expression. Simultaneously, the Lyn mutations blocked its LPS-induced accumulation in the raft fraction of RAW264 cells. These data indicate that palmitoylation, SH2- and SH3-mediated intermolecular interactions, and the catalytic activity of Lyn are required for its accumulation in rafts, thereby determining the negative regulation of TLR4 signaling.


Assuntos
Microdomínios da Membrana/enzimologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Quimiocina CCL5/metabolismo , Proteínas de Fluorescência Verde , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Cell Sci ; 128(22): 4096-111, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26446256

RESUMO

Bacterial lipopolysaccharide (LPS) induces strong pro-inflammatory reactions after sequential binding to CD14 protein and TLR4 receptor. Here, we show that CD14 controls generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in response to LPS binding. In J774 cells and HEK293 cells expressing CD14 exposed to 10-100 ng/ml LPS, the level of PI(4,5)P2 rose in a biphasic manner with peaks at 5-10 min and 60 min. After 5-10 min of LPS stimulation, CD14 underwent prominent clustering in the plasma membrane, accompanied by accumulation of PI(4,5)P2 and type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms Iα and Iγ (encoded by Pip5k1a and Pip5k1c, respectively) in the CD14 region. Clustering of CD14 with antibodies, without LPS and TLR4 participation, was sufficient to trigger PI(4,5)P2 elevation. The newly generated PI(4,5)P2 accumulated in rafts, which also accommodated CD14 and a large portion of PIP5K Iα and PIP5K Iγ. Silencing of PIP5K Iα and PIP5K Iγ, or application of drugs interfering with PI(4,5)P2 synthesis and availability, abolished the LPS-induced PI(4,5)P2 elevation and inhibited downstream pro-inflammatory reactions. Taken together, these data indicate that LPS induces clustering of CD14, which triggers PI(4,5)P2 generation in rafts that is required for maximal pro-inflammatory signaling of TLR4.


Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA