Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260709

RESUMO

Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae , sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.

2.
PLoS Pathog ; 19(8): e1011579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611070

RESUMO

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Animais , Camundongos , Membrana Celular , Receptores ErbB , Caderinas , Células Epiteliais
3.
mBio ; 12(6): e0271621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724825

RESUMO

During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1ß (IL-1ß) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1ß, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.


Assuntos
Candida albicans/fisiologia , Candidíase Bucal/metabolismo , Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Animais , Candidíase Bucal/genética , Candidíase Bucal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Ligação Proteica , Receptores de Complemento/genética , Transdução de Sinais
4.
Nat Commun ; 12(1): 3899, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162849

RESUMO

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Animais , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Divisão Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Neutrófilos/metabolismo , Virulência/genética
5.
PLoS Pathog ; 17(1): e1009221, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471869

RESUMO

During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects ß-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.


Assuntos
Candida albicans/fisiologia , Candidíase Bucal/patologia , Efrina-A2/metabolismo , Células Epiteliais/patologia , Orofaringe/patologia , Fatores de Virulência/metabolismo , Animais , Candidíase Bucal/genética , Candidíase Bucal/metabolismo , Candidíase Bucal/microbiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Efrina-A2/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Orofaringe/metabolismo , Orofaringe/microbiologia , Receptor EphA2 , Fatores de Virulência/genética
6.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462434

RESUMO

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Assuntos
Mucorales/patogenicidade , Mucormicose/patologia , Micotoxinas/metabolismo , Ricina/metabolismo , Animais , Antitoxinas/imunologia , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Apoptose , Permeabilidade Capilar , Células Cultivadas , Reações Cruzadas , Humanos , Hifas/química , Hifas/patogenicidade , Lectinas/metabolismo , Camundongos , Mucorales/química , Mucorales/classificação , Mucorales/genética , Mucormicose/microbiologia , Mucormicose/prevenção & controle , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/imunologia , Necrose , Interferência de RNA , Rhizopus/química , Rhizopus/genética , Rhizopus/patogenicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ricina/química , Ricina/imunologia , Virulência/efeitos dos fármacos , Virulência/genética
7.
Sci Rep ; 10(1): 17178, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057074

RESUMO

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Assuntos
Interleucinas/imunologia , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Adulto , Idoso , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Células THP-1/imunologia , Células THP-1/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487760

RESUMO

Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin ß1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin ß1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin ß1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.


Assuntos
Células Epiteliais/microbiologia , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Patógeno , Infecções Fúngicas Invasivas/microbiologia , Mucormicose/microbiologia , Receptores de Vitronectina/genética , Rhizopus/patogenicidade , Células A549 , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular , Cetoacidose Diabética/complicações , Cetoacidose Diabética/microbiologia , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/patologia , Receptores ErbB/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nariz/citologia , Virulência
9.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091232

RESUMO

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Assuntos
Candida albicans/genética , Candidíase Bucal/genética , Orofaringe/microbiologia , Animais , Candida albicans/metabolismo , Candidíase/genética , Modelos Animais de Doenças , Células Epiteliais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Fenótipo , Trissomia/genética , Virulência
10.
mBio ; 9(4)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108171

RESUMO

Mucormycosis is a life-threatening, invasive fungal infection that is caused by various species belonging to the order Mucorales. Rhizopus species are the most common cause of the disease, responsible for approximately 70% of all cases of mucormycosis. During pulmonary mucormycosis, inhaled Rhizopus spores must adhere to and invade airway epithelial cells in order to establish infection. The molecular mechanisms that govern this interaction are poorly understood. We performed an unbiased survey of the host transcriptional response during early stages of Rhizopus arrhizus var. delemar (R. delemar) infection in a murine model of pulmonary mucormycosis using transcriptome sequencing (RNA-seq). Network analysis revealed activation of the host's epidermal growth factor receptor (EGFR) signaling. Consistent with the RNA-seq results, EGFR became phosphorylated upon in vitro infection of human alveolar epithelial cells with several members of the Mucorales, and this phosphorylated, activated form of EGFR colocalized with R. delemar spores. Inhibition of EGFR signaling with cetuximab or gefitinib, specific FDA-approved inhibitors of EGFR, significantly reduced the ability of R. delemar to invade and damage airway epithelial cells. Furthermore, gefitinib treatment significantly prolonged survival of mice with pulmonary mucormycosis, reduced tissue fungal burden, and attenuated the activation of EGFR in response to pulmonary mucormycosis. These results indicate EGFR represents a novel host target to block invasion of alveolar epithelial cells by R. delemar, and inhibition of EGFR signaling provides a novel approach for treating mucormycosis by repurposing an FDA-approved drug.IMPORTANCE Mucormycosis is an increasingly common, highly lethal fungal infection with very limited treatment options. Using a combination of in vivo animal models, transcriptomics, cell biology, and pharmacological approaches, we have demonstrated that Mucorales fungi activate EGFR signaling to induce fungal uptake into airway epithelial cells. Inhibition of EGFR signaling with existing FDA-approved drugs significantly increased survival following R. arrhizus var. delemar infection in mice. This study enhances our understanding of how Mucorales fungi invade host cells during the establishment of pulmonary mucormycosis and provides a proof-of-concept for the repurposing of FDA-approved drugs that target EGFR function.


Assuntos
Receptores ErbB/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Mucormicose/prevenção & controle , Células A549 , Animais , Cetuximab/farmacologia , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucormicose/microbiologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Rhizopus/efeitos dos fármacos , Rhizopus/patogenicidade , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
11.
Nat Microbiol ; 3(1): 53-61, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29133884

RESUMO

Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed ß-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 and mitogen-activated protein kinase signalling in an inoculum-dependent manner, and is required for induction of a proinflammatory and antifungal response. EphA2 -/- mice have impaired inflammatory responses and reduced interleukin-17 signalling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as a PRR for ß-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase Bucal/metabolismo , Mucosa Bucal/metabolismo , Receptor EphA2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , beta-Glucanas/metabolismo , Animais , Candida albicans/crescimento & desenvolvimento , Candidíase Bucal/patologia , Linhagem Celular , Citocinas/biossíntese , Modelos Animais de Doenças , Endocitose , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Mediadores da Inflamação/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Bucal/citologia , Mucosa Bucal/microbiologia , Fosforilação , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/deficiência , Receptores de Reconhecimento de Padrão/antagonistas & inibidores , Receptores de Reconhecimento de Padrão/deficiência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
12.
mBio ; 8(2)2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325761

RESUMO

Oropharyngeal candidiasis (OPC), caused predominantly by Candida albicans, is a prevalent infection in patients with advanced AIDS, defects in Th17 immunity, and head and neck cancer. A characteristic feature of OPC is fungal invasion of the oral epithelial cells. One mechanism by which C. albicans hyphae can invade oral epithelial cells is by expressing the Als3 and Ssa1 invasins that interact with the epidermal growth factor receptor (EGFR) on epithelial cells and stimulate endocytosis of the organism. However, the signaling pathways that function downstream of EGFR and mediate C. albicans endocytosis are poorly defined. Here, we report that C. albicans infection activates the aryl hydrocarbon receptor (AhR), leading to activation of Src family kinases (SFKs), which in turn phosphorylate EGFR and induce endocytosis of the fungus. Furthermore, treatment of oral epithelial cells with interferon gamma inhibits fungal endocytosis by inducing the synthesis of kynurenines, which cause prolonged activation of AhR and SFKs, thereby interfering with C. albicans-induced EGFR signaling. Treatment of both immunosuppressed and immunocompetent mice with an AhR inhibitor decreases phosphorylation of SFKs and EGFR in the oral mucosa, reduces fungal invasion, and lessens the severity of OPC. Thus, our data indicate that AhR plays a central role in governing the pathogenic interactions of C. albicans with oral epithelial cells during OPC and suggest that this receptor is a potential therapeutic target.IMPORTANCE OPC is caused predominantly by the fungus C. albicans, which can invade the oral epithelium by several mechanisms. One of these mechanisms is induced endocytosis, which is stimulated when fungal invasins bind to epithelial cell receptors such as EGFR. Receptor binding causes rearrangement of epithelial cell microfilaments, leading to the formation of pseudopods that engulf the fungus and pull it into the epithelial cell. We discovered AhR acts via SFKs to phosphorylate EGFR and induce the endocytosis of C. albicans Our finding that a small molecule inhibitor of AhR ameliorates OPC in mice suggests that a strategy of targeting host cell signaling pathways that govern epithelial cell endocytosis of C. albicans holds promise as a new approach to preventing or treating OPC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Candidíase Bucal/microbiologia , Candidíase Bucal/patologia , Endocitose , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Camundongos , Transdução de Sinais , Quinases da Família src/metabolismo
14.
Nat Microbiol ; 2: 16211, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841851

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that invades pulmonary epithelial cells and vascular endothelial cells by inducing its own endocytosis, but the mechanism by which this process occurs is poorly understood. Here, we show that the thaumatin-like protein CalA is expressed on the surface of the A. fumigatus cell wall, where it mediates invasion of epithelial and endothelial cells. CalA induces endocytosis in part by interacting with integrin α5ß1 on host cells. In corticosteroid-treated mice, a ΔcalA deletion mutant has significantly attenuated virulence relative to the wild-type strain, as manifested by prolonged survival, reduced pulmonary fungal burden and decreased pulmonary invasion. Pretreatment with an anti-CalA antibody improves survival of mice with invasive pulmonary aspergillosis, demonstrating the potential of CalA as an immunotherapeutic target. Thus, A. fumigatus CalA is an invasin that interacts with integrin α5ß1 on host cells, induces endocytosis and enhances virulence.


Assuntos
Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/patogenicidade , Endocitose , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Integrina alfa5beta1/metabolismo , Células A549 , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Proteínas Fúngicas/genética , Deleção de Genes , Humanos , Pulmão/microbiologia , Camundongos , Ligação Proteica , Aspergilose Pulmonar/microbiologia , Aspergilose Pulmonar/patologia , Análise de Sobrevida , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Mol Microbiol ; 102(5): 827-849, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27589033

RESUMO

Candida albicans uses the Cek1 MAPK pathway to restore cells from damage of its cell wall glycostructures. Defective protein N- or O-glycosylation activates Cek1 and the transcription factor Ace2 as its downstream target, to upregulate genes encoding protein O-mannosyltransferases (Pmt proteins). In unstressed cells, Cek1-Ace2 activity blocks expression of PMT1, which is de-repressed by tunicamycin. Genomic binding targets of Ace2 included ZCF21, which was upregulated by Ace2 and found to repress PMT1 transcription in unstressed cells. Surprisingly, genes encoding components of the Cek1 pathway including MSB2, CST20, HST7, CEK1 and ACE2 were also identified as Ace2 targets indicating Ace2-mediated transcriptional amplification of pathway genes under N-glycosylation stress. In this condition, physical interaction of the Ace2 protein with the upstream MAPKKK Cst20 was detected. Cst20-GFP showed stress-induced import from the cytoplasm into the nucleus and phosphorylation of Ace2. Interestingly, forced nuclear localization of Cst20 inhibited Cek1-Ace2 signaling, while forced cytoplasmic localization of Cst20 retained full signaling activity, suggesting that nuclear Cst20 downregulates the Cek1 pathway. Collectively, the results indicate that Ace2 is a versatile multifunctional transcriptional regulator, which activates glycostress responses of C. albicans by both positive forward and negative feedback regulation of Cek1 signaling.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Candida albicans/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA