Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 441: 108916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103445

RESUMO

Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Cobaias , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Ciliadas Auditivas/patologia , Epitélio/metabolismo , Cóclea/metabolismo , Neomicina
2.
Hear Res ; 426: 108638, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368194

RESUMO

Outcomes of cochlear implantation are likely influenced by the biological state of the cochlea. Fibrosis is a pathological change frequently seen in implanted ears. The goal of this work was to investigate the relationship between fibrosis and impedance. To that end, we employed an animal model of extensive fibrosis and tested whether aspects of impedance differed from controls. Specifically, an adenovirus with a TGF-ß1 gene insert (Ad.TGF-ß1) was injected into guinea pig scala tympani to elicit rapid onset fibrosis and investigate the relation between fibrosis and impedance. We found a significant correlation between treatment and rate of impedance increase. A physical circuit model of impedance was used to separate the effect of fibrosis from other confounding factors. Supported by preliminary, yet nonconclusive, electron microscopy data, this modeling suggested that deposits on the electrode surface are an important contributor to impedance change over time.


Assuntos
Implante Coclear , Implantes Cocleares , Cobaias , Animais , Impedância Elétrica , Fator de Crescimento Transformador beta1 , Rampa do Tímpano/cirurgia , Cóclea/patologia , Fibrose , Modelos Animais
3.
Hear Res ; 414: 108404, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883366

RESUMO

It is generally believed that the efficacy of cochlear implants is partly dependent on the condition of the stimulated neural population. Cochlear pathology is likely to affect the manner in which neurons respond to electrical stimulation, potentially resulting in differences in perception of electrical stimuli across cochlear implant recipients and across the electrode array in individual cochlear implant users. Several psychophysical and electrophysiological measures have been shown to predict cochlear health in animals and were used to assess conditions near individual stimulation sites in humans. In this study, we examined the relationship between psychophysical strength-duration functions and spiral ganglion neuron density in two groups of guinea pigs with cochlear implants who had minimally-overlapping cochlear health profiles. One group was implanted in a hearing ear (N = 10) and the other group was deafened by cochlear perfusion of neomycin, inoculated with an adeno-associated viral vector with an Ntf3-gene insert (AAV.Ntf3) and implanted (N = 14). Psychophysically measured strength-duration functions for both monopolar and tripolar electrode configurations were then compared for the two treatment groups. Results were also compared to their histological outcomes. Overall, there were considerable differences between the two treatment groups in terms of their psychophysical performance as well as the relation between their functional performance and histological data. Animals in the neomycin-deafened, neurotrophin-treated, and implanted group (NNI) exhibited steeper strength-duration function slopes; slopes were positively correlated with SGN density (steeper slopes in animals that had higher SGN densities). In comparison, the implanted hearing (IH) group had shallower slopes and there was no relation between slopes and spiral ganglion density. Across all animals, slopes were negatively correlated with ensemble spontaneous activity levels (shallower slopes with higher ensemble spontaneous activity levels). We hypothesize that differences in strength-duration function slopes between the two treatment groups were related to the condition of the inner hair cells, which generate spontaneous activity that could affect the across-fiber synchrony and/or the size of the population of neural elements responding to electrical stimulation. In addition, it is likely that spiral ganglion neuron peripheral processes were present in the IH group, which could affect membrane properties of the stimulated neurons. Results suggest that the two treatment groups exhibited distinct patterns of variation in conditions near the stimulating electrodes that altered detection thresholds. Overall, the results of this study suggest a complex relationship between psychophysical detection thresholds for cochlear implant stimulation and nerve survival in the implanted cochlea. This relationship seems to depend on the characteristics of the electrical stimulus, the electrode configuration, and other biological features of the implanted cochlea such as the condition of the inner hair cells and the peripheral processes.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Animais , Cóclea/fisiologia , Implante Coclear/métodos , Estimulação Elétrica , Cobaias , Audição/fisiologia , Gânglio Espiral da Cóclea/patologia
4.
Sci Rep ; 10(1): 21397, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293609

RESUMO

Mature mammalian cochlear hair cells (HCs) do not spontaneously regenerate once lost, leading to life-long hearing deficits. Attempts to induce HC regeneration in adult mammals have used over-expression of the HC-specific transcription factor Atoh1, but to date this approach has yielded low and variable efficiency of HC production. Gfi1 is a transcription factor important for HC development and survival. We evaluated the combinatorial effects of Atoh1 and Gfi1 over-expression on HC regeneration using gene transfer methods in neonatal cochlear explants, and in vivo in adult mice. Adenoviral over-expression of Atoh1 and Gfi1 in cultured neonatal cochlear explants resulted in numerous ectopic HC-like cells (HCLCs), with significantly more cells in Atoh1 + Gfi1 cultures than Atoh1 alone. In vitro, ectopic HCLCs emerged in regions medial to inner HCs as well as in the stria vascularis. In vivo experiments were performed in mature Pou4f3DTR mice in which HCs were completely and specifically ablated by administration of diphtheria toxin. Adenoviral expression of Atoh1 or Atoh1 + Gfi1 in cochlear supporting cells induced appearance of HCLCs, with Atoh1 + Gfi1 expression leading to 6.2-fold increase of new HCLCs after 4 weeks compared to Atoh1 alone. New HCLCs were detected throughout the cochlea, exhibited immature stereocilia and survived for at least 8 weeks. Combinatorial Atoh1 and Gfi1 induction is thus a promising strategy to promote HC regeneration in the mature mammalian cochlea.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cóclea/transplante , Proteínas de Ligação a DNA/genética , Células Ciliadas Auditivas/citologia , Regeneração , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Feminino , Técnicas de Transferência de Genes , Células Ciliadas Auditivas/metabolismo , Masculino , Camundongos , Fatores de Transcrição/metabolismo
5.
JCI Insight ; 3(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467333

RESUMO

CHD7, an ATP-dependent chromatin remodeler, is disrupted in CHARGE syndrome, an autosomal dominant disorder characterized by variably penetrant abnormalities in craniofacial, cardiac, and nervous system tissues. The inner ear is uniquely sensitive to CHD7 levels and is the most commonly affected organ in individuals with CHARGE. Interestingly, upregulation or downregulation of retinoic acid (RA) signaling during embryogenesis also leads to developmental defects similar to those in CHARGE syndrome, suggesting that CHD7 and RA may have common target genes or signaling pathways. Here, we tested three separate potential mechanisms for CHD7 and RA interaction: (a) direct binding of CHD7 with RA receptors, (b) regulation of CHD7 levels by RA, and (c) CHD7 binding and regulation of RA-related genes. We show that CHD7 directly regulates expression of Aldh1a3, the gene encoding the RA synthetic enzyme ALDH1A3 and that loss of Aldh1a3 partially rescues Chd7 mutant mouse inner ear defects. Together, these studies indicate that ALDH1A3 acts with CHD7 in a common genetic pathway to regulate inner ear development, providing insights into how CHD7 and RA regulate gene expression and morphogenesis in the developing embryo.


Assuntos
Aldeído Oxirredutases/metabolismo , Síndrome CHARGE/genética , DNA Helicases/deficiência , Proteínas de Ligação a DNA/deficiência , Regulação da Expressão Gênica no Desenvolvimento , Retinal Desidrogenase/metabolismo , Tretinoína/metabolismo , Aldeído Oxirredutases/genética , Animais , Síndrome CHARGE/patologia , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Orelha Interna/embriologia , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Organogênese/genética , RNA Interferente Pequeno/metabolismo , Retinal Desidrogenase/genética
6.
Hear Res ; 355: 33-41, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28931463

RESUMO

The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.


Assuntos
Células Labirínticas de Suporte/ultraestrutura , Degeneração Neural , Nervos Periféricos/patologia , Sáculo e Utrículo/ultraestrutura , Estreptomicina , Doenças Vestibulares/patologia , Animais , Comportamento Animal , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Células Labirínticas de Suporte/metabolismo , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Atividade Motora , Miosina VIIa , Miosinas/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia , Fatores de Transcrição SOXB1/metabolismo , Sáculo e Utrículo/metabolismo , Sáculo e Utrículo/fisiopatologia , Fatores de Tempo , Doenças Vestibulares/induzido quimicamente , Doenças Vestibulares/metabolismo , Doenças Vestibulares/fisiopatologia
7.
J Assoc Res Otolaryngol ; 18(6): 731-750, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28776202

RESUMO

Because cochlear implants function by stimulating the auditory nerve, it is assumed that the condition of the nerve plays an important role in the efficacy of the prosthesis. Thus, considerable research has been devoted to methods of preserving the nerve following deafness. Neurotrophins have been identified as a potential contributor to neural health, but most of the research to date has been done in young animals and for short periods (less than 3 to 6 months) after the onset of treatment. The first objective of the current experiment was to examine the effects of a neurotrophin gene therapy delivery method on spiral ganglion neuron (SGN) preservation and function in the long term (5 to 14 months) in mature guinea pigs with cochlear implants. The second objective was to examine several potential non-invasive monitors of auditory nerve health following the neurotrophin gene therapy procedure. Eighteen mature adult male guinea pigs were deafened by cochlear perfusion of neomycin and then one ear was inoculated with an adeno-associated viral vector with an Nft3-gene insert (AAV.Ntf3) and implanted with a cochlear implant electrode array. Five control animals were deafened and inoculated with an empty AAV and implanted. Data from 43 other guinea pig ears from this and previous experiments were used for comparison: 24 animals implanted in a hearing ear, nine animals deafened and implanted with no inoculation, and ten normal-hearing non-implanted ears. After 4 to 21 months of psychophysical and electrophysiological testing, the animals were prepared for histological examination of SGN densities and inner hair cell (IHC) survival. Seventy-eight percent of the ears deafened and inoculated with AAV.Ntf3 showed better SGN survival than the 14 deafened-control ears. The degree of SGN preservation following the gene therapy procedure was variable across animals and across cochlear turns. Slopes of psychophysical multipulse integration (MPI) functions were predictive of SGN density, but only in animals with preserved IHCs. MPI was not affected by the AAV.Ntf3 treatment, but there was a minor improvement in temporal integration (TI). AAV.Ntf3 treatment had significant effects on ECAP and EABR amplitude growth func-tion (AGF) slopes; the reduction in slope in deafened ears was ameliorated by the AAV.Ntf3 treatment. Slopes of the ECAP and EABR AGFs were predictive of SGN density in a broad area near and just apical to the implant. The highest ensemble spontaneous activity (ESA) values were seen in animals with surviving IHCs, but AAV.Ntf3 treatment in deafened ears resulted in slightly higher ESA values compared to deafened untreated ears. Overall, a combination of the psychophysical and electrophysiological measures can be useful for monitoring the health of the implanted cochlea in guinea pigs. These measures should be applicable for assessing cochlear health in human subjects.


Assuntos
Surdez/terapia , Potenciais Evocados Auditivos do Tronco Encefálico , Terapia Genética , Neurotrofina 3/genética , Gânglio Espiral da Cóclea/citologia , Animais , Implantes Cocleares , Cobaias , Masculino , Neomicina
8.
Sci Rep ; 7: 46058, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387239

RESUMO

Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells.


Assuntos
Epitélio/metabolismo , Células Ciliadas Auditivas/citologia , Células-Tronco Embrionárias Humanas/citologia , Transplante de Células-Tronco , Animais , Limiar Auditivo/efeitos dos fármacos , Caproatos/farmacologia , Contagem de Células , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ducto Coclear/efeitos dos fármacos , Surdez/fisiopatologia , Epitélio/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Cobaias , Células HeLa , Humanos , Órgão Espiral/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
9.
Mol Ther Methods Clin Dev ; 3: 16052, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525291

RESUMO

Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.

10.
Mol Ther Methods Clin Dev ; 2: 15019, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029729

RESUMO

The most common reason for sensorineural deafness is death of hair cells (HCs). Heat shock proteins (HSPs) are molecular chaperones that participate in folding, targeting, and degrading proteins. HSP expression is increased in response to various environmental stresses to protect cells from damage. Here, we tested whether viral-mediated overexpression of HSP70 can protect HCs and hearing from severe ototoxicity (kanamycin and furosemide) in guinea pigs. Adenovirus-HSP70 mCherry (Ad.HSP70-mCherry) was injected to experimental animals and adenovirus-mCherry to controls, 4 days before the ototoxic insult. Hearing thresholds were measured by auditory brainstem response before the insult and again before sacrificing the animals, 14 days after the insult. Epi-fluorescence immunocytochemistry showed that injection of Ad.HSP70-mCherry resulted in mCherry fluorescence in nonsensory cells of the organ of Corti. The ototoxic insult eliminated both outer HCs and inner HCs throughout most of the cochlea of control (adenovirus-mCherry-injected) ears and contralateral (uninjected) ears. Ad.HSP70-mCherry-injected ears exhibited a significant preservation of inner HCs compared to control and contralateral ears, but outer HCs were not protected. Auditory brainstem response thresholds were significantly better in Ad.HSP70-mCherry-injected ears than in control and contralateral ears. Our data show that HSP70 augmentation may represent a potential therapy attenuating ototoxic inner HC loss.

11.
Sci Rep ; 5: 8619, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25726967

RESUMO

Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Surdez/terapia , Dependovirus/metabolismo , Orelha/patologia , Neurotrofina 3/uso terapêutico , Envelhecimento , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Sobrevivência Celular , Meios de Cultura , Surdez/patologia , Epitélio/metabolismo , Epitélio/patologia , Feminino , Vetores Genéticos , Cobaias , Células Labirínticas de Suporte/metabolismo , Células Labirínticas de Suporte/patologia , Masculino , Neomicina , Neurotrofina 3/genética , Perilinfa/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Resultado do Tratamento
12.
Nature ; 514(7521): 228-32, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25119037

RESUMO

CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.


Assuntos
Anormalidades Múltiplas/metabolismo , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Fenótipo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Anormalidades Múltiplas/genética , Alelos , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Orelha/anormalidades , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos , Deleção de Genes , Heterozigoto , Humanos , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas/genética
13.
Mol Ther ; 22(4): 873-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24394296

RESUMO

The mammalian auditory epithelium (AE) cannot replace supporting cells and hair cells once they are lost. Therefore, sensorineural hearing loss associated with missing cells is permanent. This inability to regenerate critical cell types makes the AE a potential target for cell replacement therapies such as stem cell transplantation. Inserting stem cells into the AE of deaf ears is a complicated task due to the hostile, high potassium environment of the scala media in the cochlea, and the robust junctional complexes between cells in the AE that resist stem cell integration. Here, we evaluate whether temporarily reducing potassium levels in the scala media and disrupting the junctions in the AE make the cochlear environment more receptive and facilitate survival and integration of transplanted cells. We used sodium caprate to transiently disrupt the AE junctions, replaced endolymph with perilymph, and blocked stria vascularis pumps with furosemide. We determined that these three steps facilitated survival of HeLa cells in the scala media for at least 7 days and that some of the implanted cells formed a junctional contact with native AE cells. The data suggest that manipulation of the cochlear environment facilitates survival and integration of exogenously transplanted HeLa cells in the scala media.


Assuntos
Técnicas de Cultura de Células , Cóclea/patologia , Meios de Cultivo Condicionados , Transplante de Células-Tronco , Células-Tronco/citologia , Epitélio/patologia , Células Ciliadas Auditivas/patologia , Células HeLa , Humanos , Potássio/metabolismo , Estria Vascular/citologia
14.
Hear Res ; 309: 124-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333301

RESUMO

Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Conexinas/deficiência , Terapia Genética/métodos , Perda Auditiva Neurossensorial/terapia , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Adenoviridae/genética , Fatores Etários , Animais , Limiar Auditivo , Fator Neurotrófico Derivado do Encéfalo/genética , Conexina 26 , Conexinas/genética , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural , Neurônios/patologia , Órgão Espiral/metabolismo , Órgão Espiral/patologia , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/fisiopatologia
15.
Hum Gene Ther ; 23(3): 302-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22074321

RESUMO

Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application.


Assuntos
Cóclea/metabolismo , Perda Auditiva/terapia , Ácido Hialurônico/farmacologia , Animais , Cóclea/cirurgia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cobaias , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Ácido Hialurônico/metabolismo , Masculino , Janela da Cóclea/metabolismo , Transgenes
16.
Comp Med ; 60(2): 130-5, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20412688

RESUMO

Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7 mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Cóclea , Vetores Genéticos/metabolismo , Cobaias/virologia , Perda Auditiva/patologia , Adenoviridae/genética , Adenoviridae/metabolismo , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/patologia , Adulto , Animais , Cóclea/metabolismo , Cóclea/patologia , Cóclea/virologia , Modelos Animais de Doenças , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Perda Auditiva/induzido quimicamente , Perda Auditiva/metabolismo , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Distribuição Aleatória
17.
Hear Res ; 245(1-2): 24-34, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18768155

RESUMO

The survival of the auditory nerve in cases of sensorineural hearing loss is believed to be a major factor in effective cochlear implant function. The current study assesses two measures of cochlear implant thresholds following a post-deafening treatment intended to halt auditory nerve degeneration. We used an adenoviral construct containing a gene insert for brain-derived neurotrophic factor (BDNF), a construct that has previously been shown to promote neuronal survival in a number of biological systems. We implanted ototoxically deafened guinea pigs with a multichannel cochlear implant and delivered a single inoculation of an adenovirus suspension coding for BDNF (Ad.BDNF) into the scala tympani at the time of implantation. Thresholds to electrical stimulation were assessed both psychophysically and electrophysiologically over a period of 80 days. Spiral ganglion cell survival was analyzed at the 80 days time point. Compared to the control group, the Ad.BDNF treated group had lower psychophysical and electrophysiological thresholds as well as higher survival of spiral ganglion cells. Electrophysiological, but not psychophysical, thresholds correlated well with the density of spiral ganglion cells. These results indicate that the changes in the anatomy of the auditory nerve induced by the combination of Ad.BDNF inoculation and the electrical stimulation used for testing improved functional measures of CI performance.


Assuntos
Limiar Auditivo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Implantes Cocleares , Nervo Coclear/fisiologia , Adenoviridae/genética , Animais , Sobrevivência Celular , Nervo Coclear/citologia , Terapia por Estimulação Elétrica , Eletrofisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Expressão Gênica , Vetores Genéticos , Cobaias , Perda Auditiva Neurossensorial/fisiopatologia , Perda Auditiva Neurossensorial/terapia , Humanos , Masculino , Psicoacústica , Proteínas Recombinantes/genética
18.
Hear Res ; 240(1-2): 52-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430530

RESUMO

Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdifferentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Cóclea/metabolismo , Terapia Genética/métodos , Perda Auditiva Unilateral/terapia , Adenoviridae/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Forma Celular , Cóclea/ultraestrutura , Modelos Animais de Doenças , Vetores Genéticos , Cobaias , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva Unilateral/induzido quimicamente , Perda Auditiva Unilateral/genética , Perda Auditiva Unilateral/metabolismo , Perda Auditiva Unilateral/patologia , Células Labirínticas de Suporte/metabolismo , Células Labirínticas de Suporte/ultraestrutura , Neomicina , Regeneração , Fatores de Tempo , Transdução Genética
19.
J Assoc Res Otolaryngol ; 8(3): 329-37, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17619105

RESUMO

MYOSIN XV is a motor protein that interacts with the PDZ domain-containing protein WHIRLIN and transports WHIRLIN to the tips of the stereocilia. Shaker 2 (sh2) mice have a mutation in the motor domain of MYOSIN XV and exhibit congenital deafness and circling behavior, probably because of abnormally short stereocilia. Whirler (wi) mice have a similar phenotype caused by a deletion in the third PDZ domain of WHIRLIN. We compared the morphology of Whrn (wi/wi) and Myo15 (sh2/sh2) sensory hair cells and found that Myo15 (sh2/sh2) have more frequent pathology at the base of inner hair cells than Whrn (wi/wi), and shorter outer hair cell stereocilia. Considering the functional and morphologic similarities in the phenotypes caused by mutations in Myo15 and Whrn, and the physical interaction between their encoded proteins, we used a genetic approach to test for functional overlap. Double heterozygotes (Myo15 (sh2/+), Whrn (wi/+)) have normal hearing and no increase in hearing loss compared to normal littermates. Single and double mutants (Myo15 (sh2/sh2), Whrn (wi/wi)) exhibit abnormal persistence of kinocilia and microvilli, and develop abnormal cytoskeletal architecture. Double mutants are also similar to the single mutants in viability, circling behavior, and lack of a Preyer reflex. The morphology of cochlear hair cell stereocilia in double mutants reflects a dominance of the more severe Myo15 (sh2/sh2) phenotype over the Whrn (wi/wi) phenotype. This suggests that MYOSIN XV may interact with other proteins besides WHIRLIN that are important for hair cell maturation.


Assuntos
Células Ciliadas Auditivas Internas/patologia , Proteínas de Membrana/genética , Mutação/genética , Miosinas/genética , Actinas/metabolismo , Animais , Cílios/patologia , Cílios/fisiologia , Citoesqueleto/patologia , Citoesqueleto/fisiologia , Orelha Interna/patologia , Feminino , Células Ciliadas Auditivas Internas/crescimento & desenvolvimento , Células Ciliadas Auditivas Internas/fisiologia , Audição/genética , Audição/fisiologia , Heterozigoto , Homozigoto , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Miosinas/fisiologia , Fenótipo
20.
Hear Res ; 228(1-2): 180-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416474

RESUMO

Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Implante Coclear , Implantes Cocleares , Surdez/terapia , Terapia Genética/instrumentação , Degeneração Neural/prevenção & controle , Gânglio Espiral da Cóclea/metabolismo , Transdução Genética , Adenoviridae/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Sobrevivência Celular , Células Cultivadas , Surdez/induzido quimicamente , Surdez/genética , Surdez/metabolismo , Surdez/patologia , Surdez/cirurgia , Modelos Animais de Doenças , Ácido Etacrínico , Estudos de Viabilidade , Fibroblastos/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Cobaias , Canamicina , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Desenho de Prótese , Sefarose/metabolismo , Gânglio Espiral da Cóclea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA