Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 360(6386)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674564

RESUMO

True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Animais , Movimento Celular , Endocitose , Olho/ultraestrutura , Humanos , Mitose , Organelas , Análise de Célula Única , Peixe-Zebra
2.
Dev Biol ; 418(1): 108-123, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474396

RESUMO

The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease.


Assuntos
Células Acinares/citologia , Hepatócitos/citologia , Hepatopâncreas/embriologia , Fígado/embriologia , Pâncreas Exócrino/embriologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/genética , Endoderma/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Técnicas de Silenciamento de Genes , Fator 4 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Morfolinos/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Transativadores/genética , Fatores de Transcrição/genética , Tripsina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
3.
Cell ; 159(2): 415-27, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303534

RESUMO

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Morfogênese , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular , Forma Celular , Embrião não Mamífero/citologia
4.
J Biol Chem ; 283(13): 8469-76, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18230610

RESUMO

Evolution modulates the quantitative characteristics of protein interactions and often uses combinations of weak interactions to achieve a particular specificity. We addressed how quantitative optimization might be used in the design of multidomain proteins, using a chimera containing epidermal growth factor (EGF) as a cell targeting element and interferon-alpha-2a (IFNalpha-2a) to initiate signal transduction. We first connected EGF and IFNalpha-2a via a linker that allows both ligands to bind to their receptors on a cell surface and then incorporated a series of mutations into the IFNalpha-2a portion that progressively decrease both the on rate and the dissociation constant of the IFNalpha-2a-IFNalpha receptor 2 (IFNAR2) interaction. Using this strategy, we designed chimeric proteins in which the activation of the IFNalpha receptor in HeLa, A431, and engineered Daudi cells depends on the presence of EGF receptor on the same cell. The mutant chimeric proteins also inhibited proliferation of IFNalpha-sensitive cells in an EGF receptor-dependent manner. These results provide insights into the quantitative requirements for specific binding to multisubunit receptors and illustrate the value of a quantitative approach in the design of synthetic-biological constructs.


Assuntos
Fenômenos Fisiológicos Celulares , Engenharia de Proteínas/métodos , Linhagem Celular , Proliferação de Células , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Interferon alfa-2 , Interferon-alfa/genética , Interferon-alfa/metabolismo , Ligantes , Mutação/genética , Proteínas Recombinantes , Fator de Transcrição STAT1/metabolismo , Sensibilidade e Especificidade
5.
Genome Res ; 16(7): 912-21, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16769980

RESUMO

Pre-mRNA processing often occurs in coordination with transcription thereby coupling these two key regulatory events. As such, many proteins involved in mRNA processing associate with the transcriptional machinery and are in proximity to DNA. This proximity allows for the mapping of the genomic associations of RNA binding proteins by chromatin immunoprecipitation (ChIP) as a way of determining their sites of action on the encoded mRNA. Here, we used ChIP combined with high-density microarrays to localize on the human genome three functionally distinct RNA binding proteins: the splicing factor polypyrimidine tract binding protein (PTBP1/hnRNP I), the mRNA export factor THO complex subunit 4 (ALY/THOC4), and the 3' end cleavage stimulation factor 64 kDa (CSTF2). We observed interactions at promoters, internal exons, and 3' ends of active genes. PTBP1 had biases toward promoters and often coincided with RNA polymerase II (RNA Pol II). The 3' processing factor, CSTF2, had biases toward 3' ends but was also observed at promoters. The mRNA processing and export factor, ALY, mapped to some exons but predominantly localized to introns and did not coincide with RNA Pol II. Because the RNA binding proteins did not consistently coincide with RNA Pol II, the data support a processing mechanism driven by reorganization of transcription complexes as opposed to a scanning mechanism. In sum, we present the mapping in mammalian cells of RNA binding proteins across a portion of the genome that provides insight into the transcriptional assembly of RNA-protein complexes.


Assuntos
Genoma Humano , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Imunoprecipitação da Cromatina , RNA Polimerases Dirigidas por DNA/metabolismo , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA