Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(7): 4059-74, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540200

RESUMO

A link between Tau phosphorylation and aggregation has been shown in different models for Alzheimer disease, including yeast. We used human Tau purified from yeast models to generate new monoclonal antibodies, of which three were further characterized. The first antibody, ADx201, binds the Tau proline-rich region independently of the phosphorylation status, whereas the second, ADx215, detects an epitope formed by the Tau N terminus when Tau is not phosphorylated at Tyr(18). For the third antibody, ADx210, the binding site could not be determined because its epitope is probably conformational. All three antibodies stained tangle-like structures in different brain sections of THY-Tau22 transgenic mice and Alzheimer patients, and ADx201 and ADx210 also detected neuritic plaques in the cortex of the patient brains. In hippocampal homogenates from THY-Tau22 mice and cortex homogenates obtained from Alzheimer patients, ADx215 consistently stained specific low order Tau oligomers in diseased brain, which in size correspond to Tau dimers. ADx201 and ADx210 additionally reacted to higher order Tau oligomers and presumed prefibrillar structures in the patient samples. Our data further suggest that formation of the low order Tau oligomers marks an early disease stage that is initiated by Tau phosphorylation at N-terminal sites. Formation of higher order oligomers appears to require additional phosphorylation in the C terminus of Tau. When used to assess Tau levels in human cerebrospinal fluid, the antibodies permitted us to discriminate patients with Alzheimer disease or other dementia like vascular dementia, indicative that these antibodies hold promising diagnostic potential.


Assuntos
Doença de Alzheimer/diagnóstico , Anticorpos Monoclonais , Encéfalo/patologia , Hipocampo/patologia , Proteínas tau/química , Proteínas tau/imunologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/imunologia , Animais , Biotinilação , Western Blotting , Encéfalo/imunologia , Encéfalo/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Imunização , Técnicas Imunoenzimáticas , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Emaranhados Neurofibrilares , Fragmentos de Peptídeos/metabolismo , Fosforilação , Placa Amiloide , Saccharomyces cerevisiae , Proteínas tau/líquido cefalorraquidiano
2.
Front Oncol ; 2: 77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848872

RESUMO

DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2-6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA