Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 137(3): 705-717, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052773

RESUMO

Progressive functional decline is a key element of cancer-associated cachexia. Major barriers to translating preclinical therapies into the clinic include lack of cancer models that accurately mimic functional decline, which develops over time, and use of nonspecific measures, like grip strength, as surrogates for physical function. In this study, we aimed to extend the survival and longevity of a cancer model, to investigate cachexia-related function at the basic science level. Survival extension studies were performed by testing multiple cell lines, dilutions, and vehicle-types in orthotopic implantation of K-rasLSL.G12D/+; Trp53R172H/+; Pdx-1-Cre (KPC)-derived cells. One hundred twenty-eight animals in this new model were assessed for cachexia syndrome phenotype using a battery of anatomical, biochemical, and behavioral techniques. We extended the survival of the KPC orthotopic model to 8-9 wk postimplantation using a relatively low 100-cell dose of DT10022 KPC cells (P < 0.001). In this low-dose orthotopic (LO) model, progressive muscle wasting was detected in parallel to systemic inflammation; skeletal muscle atrophy at the fiber level was detected as early as 3 wk postimplantation compared with controls (P < 0.001). Gait speed in LO animals declined as early as 2 wk postimplantation, whereas grip strength change was a late event. Principal component and regression analyses revealed distinct cachectic and noncachectic animal populations, which we leveraged to show that the gait speed decline was specific to cachexia (P < 0.01), whereas grip strength decline was not (P = 0.19). Gait speed represents an accurate surrogate for cachexia-related physical function as opposed to grip strength.NEW & NOTEWORTHY Previous studies of cancer-induced cachexia have been confounded by the relatively rapid death of animal subjects. Using a lower dose of cancer cells in combination with a battery of behavioral, structural, histological, and biochemical techniques, we show that gait speed is actually the best indicator of functional decline due to cachexia. Future studies are required to define the underlying physiological basis of these findings.


Assuntos
Caquexia , Músculo Esquelético , Caquexia/fisiopatologia , Animais , Camundongos , Músculo Esquelético/fisiopatologia , Modelos Animais de Doenças , Masculino , Linhagem Celular Tumoral , Neoplasias/complicações , Neoplasias/fisiopatologia , Atrofia Muscular/fisiopatologia , Força da Mão/fisiologia , Feminino
2.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014165

RESUMO

Background: Progressive functional decline is a key element of cancer-associated cachexia. No therapies have successfully translated to the clinic due to an inability to measure and improve physical function in cachectic patients. Major barriers to translating pre-clinical therapies to the clinic include lack of cancer models that accurately mimic functional decline and use of non-specific outcome measures of function, like grip strength. New approaches are needed to investigate cachexia-related function at both the basic and clinical science levels. Methods: Survival extension studies were performed by testing multiple cell lines, dilutions, and vehicle-types in orthotopic implantation of K-ras LSL.G12D/+ ; Trp53 R172H/+ ; Pdx-1-Cre (KPC) derived cells. 128 animals in this new model were then assessed for muscle wasting, inflammation, and functional decline using a battery of biochemical, physiologic, and behavioral techniques. In parallel, we analyzed a 156-subject cohort of cancer patients with a range of cachexia severity, and who required rehabilitation, to determine the relationship between gait speed via six-minute walk test (6MWT), grip strength (hGS), and functional independence measures (FIM). Cachectic patients were identified using the Weight Loss Grading Scale (WLGS), Fearon consensus criteria, and the Prognostic Nutritional Index (PNI). Results: Using a 100-cell dose of DT10022 KPC cells, we extended the survival of the KPC orthotopic model to 8-9 weeks post-implantation compared to higher doses used (p<0.001). In this Low-dose Orthotopic (LO) model, both progressive skeletal and cardiac muscle wasting were detected in parallel to systemic inflammation; skeletal muscle atrophy at the fiber level was detected as early as 3 weeks post-implantation compared to controls (p<0.001). Gait speed in LO animals declined as early 2 week post-implantation whereas grip strength change was a late event and related to end of life. Principle component analysis (PCA) revealed distinct cachectic and non-cachectic animal populations, which we leveraged to show that gait speed decline was specific to cachexia (p<0.01) while grip strength decline was not (p=0.19). These data paralleled our observations in cancer patients with cachexia who required rehabilitation. In cachectic patients (identified by WLGS, Fearon criteria, or PNI, change in 6MWT correlated with motor FIM score changes while hGS did not (r 2 =0.18, p<0.001). This relationship between 6MWT and FIM in cachectic patients was further confirmed through multivariate regression (r 2 =0.30, p<0.001) controlling for age and cancer burden. Conclusion: Outcome measures linked to gait are better associated with cachexia related function and preferred for future pre-clinical and clinical cachexia studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA