Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Rev Endocrinol ; 20(9): 526-540, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760482

RESUMO

Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.


Assuntos
Proteínas Quinases Ativadas por AMP , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Caquexia/metabolismo , Neoplasias/metabolismo , Metabolismo Energético/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364105

RESUMO

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
3.
J Cachexia Sarcopenia Muscle ; 14(4): 1631-1647, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37194385

RESUMO

BACKGROUND: Metabolic dysfunction and cachexia are associated with poor cancer prognosis. With no pharmacological treatments, it is crucial to define the molecular mechanisms causing cancer-induced metabolic dysfunction and cachexia. Adenosine monophosphate-activated protein kinase (AMPK) connects metabolic and muscle mass regulation. As AMPK could be a potential treatment target, it is important to determine the function for AMPK in cancer-associated metabolic dysfunction and cachexia. We therefore established AMPK's roles in cancer-associated metabolic dysfunction, insulin resistance and cachexia. METHODS: In vastus lateralis muscle biopsies from n = 26 patients with non-small cell lung cancer (NSCLC), AMPK signalling and protein content were examined by immunoblotting. To determine the role of muscle AMPK, male mice overexpressing a dominant-negative AMPKα2 (kinase-dead [KiDe]) specifically in striated muscle were inoculated with Lewis lung carcinoma (LLC) cells (wild type [WT]: n = 27, WT + LLC: n = 34, mAMPK-KiDe: n = 23, mAMPK-KiDe + LLC: n = 38). Moreover, male LLC-tumour-bearing mice were treated with (n = 10)/without (n = 9) 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to activate AMPK for 13 days. Littermate mice were used as controls. Metabolic phenotyping of mice was performed via indirect calorimetry, body composition analyses, glucose and insulin tolerance tests, tissue-specific 2-[3H]deoxy-d-glucose (2-DG) uptake and immunoblotting. RESULTS: Patients with NSCLC presented increased muscle protein content of AMPK subunits α1, α2, ß2, γ1 and γ3 ranging from +27% to +79% compared with control subjects. In patients with NSCLC, AMPK subunit protein content correlated with weight loss (α1, α2, ß2 and γ1), fat-free mass (α1, ß2 and γ1) and fat mass (α1 and γ1). Tumour-bearing mAMPK-KiDe mice presented increased fat loss and glucose and insulin intolerance. LLC in mAMPK-KiDe mice displayed lower insulin-stimulated 2-DG uptake in skeletal muscle (quadriceps: -35%, soleus: -49%, extensor digitorum longus: -48%) and the heart (-29%) than that in non-tumour-bearing mice. In skeletal muscle, mAMPK-KiDe abrogated the tumour-induced increase in insulin-stimulated TBC1D4thr642 phosphorylation. The protein content of TBC1D4 (+26%), pyruvate dehydrogenase (PDH; +94%), PDH kinases (+45% to +100%) and glycogen synthase (+48%) was increased in skeletal muscle of tumour-bearing mice in an AMPK-dependent manner. Lastly, chronic AICAR treatment elevated hexokinase II protein content and normalized phosphorylation of p70S6Kthr389 (mTORC1 substrate) and ACCser212 (AMPK substrate) and rescued cancer-induced insulin intolerance. CONCLUSIONS: Protein contents of AMPK subunits were upregulated in skeletal muscle of patients with NSCLC. AMPK activation seemed protectively inferred by AMPK-deficient mice developing metabolic dysfunction in response to cancer, including AMPK-dependent regulation of multiple proteins crucial for glucose metabolism. These observations highlight the potential for targeting AMPK to counter cancer-associated metabolic dysfunction and possibly cachexia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Masculino , Animais , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/complicações , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias Pulmonares/complicações , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo
4.
Acta Oncol ; 62(4): 364-371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042166

RESUMO

BACKGROUND: Insulin resistance is a critical cause of metabolic dysfunctions. Metabolic dysfunction is common in patients with cancer and is associated with higher cancer recurrence rates and reduced overall survival. Yet, insulin resistance is rarely considered in the clinic and thus it is uncertain how frequently this condition occurs in patients with cancer. METHODS: To address this knowledge gap, we performed a systematic review and a meta-analysis guided by the Preferred Items for Systematic Review and Meta-Analyses (PRISMA) statement. We included studies assessing insulin resistance in patients with various cancer diagnoses, using the gold-standard hyperinsulinemic-euglycemic clamp method. Studies eligible for inclusion were as follows: (1) included cancer patients older than 18 years of age; (2) included an age-matched control group consisting of individuals without cancer or other types of neoplasms; (3) measured insulin sensitivity using the hyperinsulinemic-euglycemic clamp method. We searched the databases MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for articles published from database inception through March 2023 with no language restriction, supplemented by backward and forward citation searching. Bias was assessed using funnel plot. FINDINGS: Fifteen studies satisfied the criteria. The mean insulin-stimulated rate of glucose disposal (Rd) was 7.5 mg/kg/min in control subjects (n = 154), and 4.7 mg/kg/min in patients with a cancer diagnosis (n = 187). Thus, the Rd mean difference was -2.61 mg/kg/min [95% confidence interval, -3.04; -2.19], p<.01). Heterogeneity among the included studies was insignificant (p=.24). INTERPRETATION: These findings suggest that patients with a cancer diagnosis are markedly insulin resistant. As metabolic dysfunction in patients with cancer associates with increased recurrence and reduced overall survival, future studies should address if ameliorating insulin resistance in this population can improve these outcomes thereby improving patient care.Key pointsMetabolic dysfunction increases cancer recurrence rates and reduces survival for patients with cancer.Insulin resistance is a critical cause of metabolic dysfunctions.To date, no comprehensive compilation of research investigating insulin resistance in cancer patients has been produced.In this meta-analysis, we found that patients with various cancers were markedly insulin-resistant.


Assuntos
Resistência à Insulina , Insulinas , Neoplasias , Humanos
6.
FASEB J ; 36(3): e22211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195922

RESUMO

Metabolic dysfunction and insulin resistance are emerging as hallmarks of cancer and cachexia, and impair cancer prognosis. Yet, the molecular mechanisms underlying impaired metabolic regulation are not fully understood. To elucidate the mechanisms behind cancer-induced insulin resistance in muscle, we isolated extensor digitorum longus (EDL) and soleus muscles from Lewis Lung Carcinoma tumor-bearing mice. Three weeks after tumor inoculation, muscles were isolated and stimulated with or without a submaximal dose of insulin (1.5 nM). Glucose transport was measured using 2-[3 H]Deoxy-Glucose and intramyocellular signaling was investigated using immunoblotting. In soleus muscles from tumor-bearing mice, insulin-stimulated glucose transport was abrogated concomitantly with abolished insulin-induced TBC1D4 and GSK3 phosphorylation. In EDL, glucose transport and TBC1D4 phosphorylation were not impaired in muscles from tumor-bearing mice, while AMPK signaling was elevated. Anabolic insulin signaling via phosphorylation of the mTORC1 targets, p70S6K thr389, and ribosomal-S6 ser235, were decreased by cancer in soleus muscle while increased or unaffected in EDL. In contrast, the mTOR substrate, pULK1 ser757, was reduced in both soleus and EDL by cancer. Hence, cancer causes considerable changes in skeletal muscle insulin signaling that is dependent on muscle-type, which could contribute to metabolic dysregulation in cancer. Thus, the skeletal muscle could be a target for managing metabolic dysfunction in cancer.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Glucose/metabolismo , Secreção de Insulina , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801684

RESUMO

Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.


Assuntos
Terapia por Exercício/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/terapia , Tecido Adiposo/metabolismo , Animais , Caquexia/metabolismo , Exercício Físico/fisiologia , Humanos , Hiperlipidemias/metabolismo , Inflamação , Resistência à Insulina , Doenças Metabólicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/fisiopatologia , Ratos , Regulação para Cima
9.
Int J Obes (Lond) ; 45(2): 316-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32873911

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a therapeutic intervention for morbid obesity and type 2 diabetes (T2D) that improves metabolic regulation. Follistatin (Fst) could be implicated in improved glycemia as it is highly regulated by RYGB. However, it is unknown if metabolic status, such as T2D, alters the Fst response to RYGB. In addition, the effect of RYGB on the Fst target, activin A, is unknown in individuals with obesity and T2D, but is needed to interpret the functional effects of altering Fst. Finally, whether Fst-regulated intracellular signaling contributes to beneficial effects of RYGB is undetermined. METHODS: Circulating Fst and activin A were measured before, 1 week, and 1 year after RYGB surgery in a total of 20 individuals with obesity, 10 with normoglycemia (NGT) and 10 with preoperative T2D. Intracellular signaling downstream of the Activin receptor type IIB (ActRIIB) signaling pathway was analyzed in skeletal muscle and adipose tissue. RESULTS: The doubling in circulating Fst observed in subjects with NGT 1-week and 1-year post surgery was absent in T2D. After 1 week, RYGB reduced activin A by 27% (p < 0.001) and 20% (p < 0.01) in subjects with NGT and T2D, respectively; a reduction that tended to be maintained in the subjects with T2D at 1-year post-RYGB (-15%; p = 0.0592). RYGB had no effects on skeletal muscle ActRIIB signaling. In contrast, adipose tissue phosphorylation of SMAD2Ser465/467, p70S6KThr389, S6RPSer235/236, and 4E-BP1Thr37/49 was highly regulated, particularly 1-year post-RYGB (p < 0.05). CONCLUSIONS: In subjects with preoperative T2D, RYGB did not increase circulating Fst contrasting subjects with NGT, while the reduction in activin A was maintained. ActRIIB signaling was upregulated in adipose tissue, but not skeletal muscle, following RYGB in both individuals with NGT and T2D. Our results suggest a role of adipose tissue ActRIIB signaling for the beneficial effects of RYGB surgery.


Assuntos
Receptores de Activinas Tipo II/análise , Ativinas/sangue , Ativinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Folistatina/sangue , Folistatina/metabolismo , Obesidade Mórbida , Tecido Adiposo/metabolismo , Adulto , Biópsia , Glicemia , Feminino , Seguimentos , Derivação Gástrica , Glucose/metabolismo , Controle Glicêmico , Humanos , Subunidades beta de Inibinas/metabolismo , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Transdução de Sinais , Fatores de Tempo
10.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112102

RESUMO

BACKGROUND: Circulating follistatin (Fst) binds activin A and thereby regulates biological functions such as muscle growth and ß-cell survival. However, Fst and activin A's implication in metabolic regulation is unclear. OBJECTIVE: To investigate circulating Fst and activin A in obesity and type 2 diabetes (T2D) and determine their association with metabolic parameters. Further, to examine regulation of Fst and activin A by insulin and the influence of obesity and T2D hereon. METHODS: Plasma Fst and activin A levels were analyzed in obese T2D patients (N = 10) closely matched to glucose-tolerant lean (N = 12) and obese (N = 10) individuals in the fasted state and following a 4-h hyperinsulinemic-euglycemic clamp (40 mU·m-2·min-1) combined with indirect calorimetry. RESULTS: Circulating Fst was ~30% higher in patients with T2D compared with both lean and obese nondiabetic individuals (P < .001), while plasma activin A was unaltered. In the total cohort, fasting plasma Fst correlated positively with fasting plasma glucose, serum insulin and C-peptide levels, homeostasis model assessment of insulin resistance, and hepatic and adipose tissue insulin resistance after adjusting for age, gender and group (all r > 0.47; P < .05). However, in the individual groups these correlations only achieved significance in patients with T2D (not plasma glucose). Acute hyperinsulinemia at euglycemia reduced circulating Fst by ~30% (P < .001) and this response was intact in patients with T2D. Insulin inhibited FST expression in human hepatocytes after 2 h and even further after 48 h. CONCLUSIONS: Elevated circulating Fst, but not activin A, is strongly associated with measures of insulin resistance in patients with T2D. However, the ability of insulin to suppress circulating Fst is preserved in T2D.


Assuntos
Ativinas/sangue , Diabetes Mellitus Tipo 2/sangue , Folistatina/sangue , Insulina/fisiologia , Obesidade/sangue , Ativinas/metabolismo , Glicemia/metabolismo , Peptídeo C/sangue , Estudos de Casos e Controles , Jejum/sangue , Feminino , Folistatina/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade
11.
Metabolism ; 105: 154169, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987858

RESUMO

BACKGROUND: Redirecting glucose from skeletal muscle and adipose tissue, likely benefits the tumor's energy demand to support tumor growth, as cancer patients with type 2 diabetes have 30% increased mortality rates. The aim of this study was to elucidate tissue-specific contributions and molecular mechanisms underlying cancer-induced metabolic perturbations. METHODS: Glucose uptake in skeletal muscle and white adipose tissue (WAT), as well as hepatic glucose production, were determined in control and Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice using isotopic tracers. Skeletal muscle microvascular perfusion was analyzed via a real-time contrast-enhanced ultrasound technique. Finally, the role of fatty acid turnover on glycemic control was determined by treating tumor-bearing insulin-resistant mice with nicotinic acid or etomoxir. RESULTS: LLC tumor-bearing mice displayed reduced insulin-induced blood-glucose-lowering and glucose intolerance, which was restored by etomoxir or nicotinic acid. Insulin-stimulated glucose uptake was 30-40% reduced in skeletal muscle and WAT of mice carrying large tumors. Despite compromised glucose uptake, tumor-bearing mice displayed upregulated insulin-stimulated phosphorylation of TBC1D4Thr642 (+18%), AKTSer474 (+65%), and AKTThr309 (+86%) in muscle. Insulin caused a 70% increase in muscle microvascular perfusion in control mice, which was abolished in tumor-bearing mice. Additionally, tumor-bearing mice displayed increased (+45%) basal (not insulin-stimulated) hepatic glucose production. CONCLUSIONS: Cancer can result in marked perturbations on at least six metabolically essential functions; i) insulin's blood-glucose-lowering effect, ii) glucose tolerance, iii) skeletal muscle and WAT insulin-stimulated glucose uptake, iv) intramyocellular insulin signaling, v) muscle microvascular perfusion, and vi) basal hepatic glucose production in mice. The mechanism causing cancer-induced insulin resistance may relate to fatty acid metabolism.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Músculo Esquelético/irrigação sanguínea , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/diagnóstico por imagem , Feminino , Intolerância à Glucose/complicações , Resistência à Insulina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Músculo Esquelético/diagnóstico por imagem , Fluxo Sanguíneo Regional , Vasodilatadores/farmacologia
12.
Nat Commun ; 10(1): 4623, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604916

RESUMO

Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle. Furthermore, two NOX2 loss-of-function mouse models lacking either p47phox or Rac1 presented striking phenotypic similarities, including greatly reduced exercise-stimulated glucose uptake and GLUT4 translocation. These findings indicate that NOX2 is a major myocellular ROS source, regulating glucose transport capacity during moderate-intensity exercise.


Assuntos
Citosol/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , NADPH Oxidase 2/metabolismo , Esforço Físico , Espécies Reativas de Oxigênio/metabolismo , Adulto , Animais , Ergometria , Transportador de Glucose Tipo 4/metabolismo , Humanos , Masculino , Camundongos , Músculo Esquelético/citologia , Oxirredução , Fosforilação , Condicionamento Físico Animal , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 10(6): 1241-1257, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31402604

RESUMO

BACKGROUND: Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor ß (TGF-ß) superfamily, including activin A, which causes atrophy. TGF-ß superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined. METHODS: To elucidate if TGF-ß superfamily ligands regulate insulin action, we used an adeno-associated virus gene editing approach to overexpress an activin A inhibitor, follistatin (Fst288), in mouse muscle of lean and diet-induced obese mice. We determined basal and insulin-stimulated 2-deoxy-glucose uptake using isotopic tracers in vivo. Furthermore, to evaluate whether circulating Fst and activin A concentrations are associated with obesity, insulin resistance, and weight loss in humans, we analysed serum from morbidly obese subjects before, 1 week, and 1 year after Roux-en-Y gastric bypass (RYGB). RESULTS: Fst288 muscle overexpression markedly increased in vivo insulin-stimulated (but not basal) glucose uptake (+75%, P < 0.05) and increased protein expression and intracellular insulin signalling of AKT, TBC1D4, PAK1, pyruvate dehydrogenase-E1α, and p70S6K, while decreasing TBC1D1 signaling (P < 0.05). Fst288 increased both basal and insulin-stimulated protein synthesis, but no correlation was observed between the Fst288-driven hypertrophy and the increase in insulin-stimulated glucose uptake. Importantly, Fst288 completely normalized muscle glucose uptake in insulin-resistant diet-induced obese mice. RYGB surgery doubled circulating Fst and reduced activin A (-24%, P < 0.05) concentration 1 week after surgery before any significant weight loss in morbidly obese normoglycemic patients, while major weight loss after 1 year did not further change the concentrations. CONCLUSIONS: We here present evidence that Fst is a potent regulator of insulin action in muscle, and in addition to AKT and p70S6K, we identify TBC1D1, TBC1D4, pyruvate dehydrogenase-E1α, and PAK1 as Fst targets. Circulating Fst more than doubled post-RYGB surgery, a treatment that markedly improved insulin sensitivity, suggesting a role for Fst in regulating glycaemic control. These findings demonstrate the therapeutic potential of inhibiting TGF-ß superfamily ligands to improve insulin action and Fst's relevance to muscle wasting-associated insulin-resistant conditions in mice and humans.


Assuntos
Folistatina/sangue , Folistatina/genética , Atrofia Muscular/metabolismo , Obesidade/cirurgia , Adulto , Animais , Dependovirus , Feminino , Derivação Gástrica , Vetores Genéticos/farmacologia , Células HEK293 , Humanos , Subunidades beta de Inibinas/antagonistas & inibidores , Subunidades beta de Inibinas/sangue , Resistência à Insulina , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Obesidade/sangue , Parvovirinae/genética , Ratos , Transdução de Sinais
14.
Cells ; 8(5)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075957

RESUMO

Rho guanosine triphosphatases (GTPases) are key regulators in a number of cellular functions, including actin cytoskeleton remodeling and vesicle traffic. Traditionally, Rho GTPases are studied because of their function in cell migration and cancer, while their roles in metabolism are less documented. However, emerging evidence implicates Rho GTPases as regulators of processes of crucial importance for maintaining metabolic homeostasis. Thus, the time is now ripe for reviewing Rho GTPases in the context of metabolic health. Rho GTPase-mediated key processes include the release of insulin from pancreatic ß cells, glucose uptake into skeletal muscle and adipose tissue, and muscle mass regulation. Through the current review, we cast light on the important roles of Rho GTPases in skeletal muscle, adipose tissue, and the pancreas and discuss the proposed mechanisms by which Rho GTPases act to regulate glucose metabolism in health and disease. We also describe challenges and goals for future research.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Humanos , Camundongos , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Ratos
15.
Bone ; 116: 120-134, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036679

RESUMO

Bone microarchitecture and strength are impaired by obesity and physical inactivity, but the underlying molecular regulation of bone metabolism in response to these factors is not well understood. Therefore, we analyzed bone and energy metabolism in male mice fed a high-fat or standard chow diet for 12 weeks with or without free access to running wheels. High-fat diet (HFD) mimicked the human condition of obesity and insulin resistance, including symptoms such as elevated serum glucose and insulin levels and reduced insulin-stimulated glucose uptake into muscle and adipose tissue. Interestingly, HFD also decreased (-44%) glucose uptake into bone marrow. Bone mass was reduced (-45%) by HFD due to a diminished (-45%) bone remodeling rate. Bone matrix quality aspects, such as biomechanical stability, were additionally decreased. Concurrently, the bone marrow adiposity increased (+63%) in response to a HFD. Further, we detected elevated expression of the Wnt signaling inhibitor dickkopf-1 (Dkk-1, +42%) in mice fed a HFD, but this was not reflected in serum samples obtained from obese humans. In mice, exercise attenuated the adverse effects of HFD by reversing the glucose uptake into bone marrow, improving the bone mass and bone matrix quality while decreasing the bone marrow adiposity. This data shows that exercise prevents some, but not all of the negative effects of HFD on bone health and suggests that insulin signaling in bone marrow and Dkk-1 signaling may be involved in the pathogenesis of bone loss induced by HFD.


Assuntos
Osso e Ossos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Condicionamento Físico Animal , Adiposidade , Adulto , Animais , Medula Óssea/metabolismo , Matriz Óssea/patologia , Osso e Ossos/patologia , Contagem de Células , Feminino , Glucose/metabolismo , Humanos , Hiperinsulinismo/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Tamanho do Órgão , Osteoclastos/patologia , Osteogênese , Via de Sinalização Wnt
16.
J Physiol ; 596(12): 2283-2299, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749029

RESUMO

KEY POINTS: The actin cytoskeleton regulating GTPase, Rac1, is a novel player in insulin-stimulated glucose uptake in muscle in vivo. High-fat diet (HFD) exacerbates muscle insulin resistance in Rac1 muscle knockout (mKO) mice. Muscle Rac1 KO protects against HFD-induced insulin resistance in fat tissue indicating tissue cross-talk. A fatty diet markedly reduces insulin clearance in mice. ABSTRACT: Insulin resistance and perturbations in glucose metabolism underpin common lifestyle diseases such as type 2 diabetes and obesity. Insulin resistance in muscle is characterized by compromised activity of the GTPase, Ras-related C3 Botulinum toxin substrate 1 (Rac1), yet the role of Rac1 in insulin-stimulated glucose uptake in vivo and diet-induced insulin resistance is unknown. Inducible muscle-specific Rac1 knockout (Rac1 mKO) and wild type (WT) littermate mice were either fed a chow or a 60% high-fat diet (HFD). Insulin-stimulated 2-deoxy-glucose uptake, intracellular signalling, protein expression, substrate utilization, and glucose and insulin tolerance were assessed. In chow-fed mice, in vivo insulin-stimulated glucose uptake was reduced in triceps, soleus and gastrocnemius muscles from Rac1 mKO mice. HFD-induced whole body insulin resistance was exacerbated by the lack of muscle Rac1 and glucose uptake was reduced in all muscles, except for soleus. Muscle Akt (also known as protein kinase B) signalling was unaffected by diet or genotype. In adipose tissue, Rac1 mKO mice were protected from HFD-induced insulin resistance (with respect to both glucose uptake and phosphorylated-Akt), rendering their whole body glucose tolerance comparable to WT mice on HFD. Our findings show that lack of Rac1 exacerbates HFD-induced insulin resistance in skeletal muscle. Whole body glucose tolerance, however, was largely unaffected in Rac1 mKO mice, likely due to improved insulin-stimulated glucose uptake in adipose tissue. We conclude that lack of Rac1 in the context of obesity is detrimental to insulin-stimulated muscle glucose uptake in muscle independently of Akt signalling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Resistência à Insulina , Músculo Esquelético/patologia , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Feminino , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
J Physiol ; 595(16): 5557-5571, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620941

RESUMO

KEY POINTS: Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. ABSTRACT: Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day-1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease.


Assuntos
Sacarose Alimentar/farmacologia , Adulto , Antígenos CD/fisiologia , Caderinas/fisiologia , Estudos Cross-Over , Epoprostenol/fisiologia , Exercício Físico/fisiologia , Artéria Femoral/fisiologia , Produtos Finais de Glicação Avançada/sangue , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Óxidos de Nitrogênio/sangue , Fosforilação , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada/sangue , Fluxo Sanguíneo Regional , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Adulto Jovem
18.
Endocrinology ; 157(11): 4184-4191, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27589085

RESUMO

Dasatinib (Sprycel) is a tyrosine kinase inhibitor approved for treatment of chronic myeloid leukemia. In this study, we identify dasatinib as a potent inducer of Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α mRNA. Dasatinib increased PGC-1α mRNA expression up to 6-fold in 3T3-F442A adipocytes, primary adipocytes, and epididymal white adipose tissue from lean and diet-induced obese mice. Importantly, gene expression translated into increased PGC-1α protein content analyzed in melanoma cells and isolated mitochondria from adipocytes. However, dasatinib treatment had adverse effect on glucose tolerance in diet-induced obese and Ob/Ob mice. This correlated with increased hepatic PGC-1α expression and the gluconeogenesis genes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. In conclusion, we show that dasatinib is a potent inducer of PGC-1α mRNA and protein in adipose tissue. However, despite beneficial effects of increased PGC-1α content in adipose tissue, dasatinib significantly impaired glucose tolerance in obese but not lean mice. As far as we are aware, this is the first study to show that dasatinib regulates PGC-1α and causes glucose intolerance in obese mice. This should be considered in the treatment of chronic myeloid leukemia.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Dasatinibe/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Dasatinibe/efeitos adversos , Teste de Tolerância a Glucose , Glucose-6-Fosfatase/metabolismo , Immunoblotting , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Reação em Cadeia da Polimerase
20.
Biochem J ; 467(3): 461-72, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695398

RESUMO

AMP-activated protein kinase (AMPK) occurs as heterotrimeric complexes in which a catalytic subunit (α1/α2) is bound to one of two ß subunits (ß1/ß2) and one of three γ subunits (γ1/γ2/γ3). The ability to selectively activate specific isoforms would be a useful research tool and a promising strategy to combat diseases such as cancer and Type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 (unc-51-like autophagy-activating kinase 1) on Ser555, but not proposed AMPK-γ3 substrates such as Ser231 on TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 (TBC1D1) or Ser212 on acetyl-CoA carboxylase subunit 2 (ACC2), nor did it stimulate glucose transport. Surprisingly, however, in human embryonic kidney (HEK) 293 cells expressing human γ1, γ2 or γ3, PT-1 activated all three complexes equally. We were unable to reproduce previous findings suggesting that PT-1 activates AMPK by direct binding between the kinase and auto-inhibitory domains (AIDs) of the α subunit. We show instead that PT-1 activates AMPK indirectly by inhibiting the respiratory chain and increasing cellular AMP:ATP and/or ADP:ATP ratios. Consistent with this mechanism, PT-1 failed to activate AMPK in HEK293 cells expressing an AMP-insensitive R299G mutant of AMPK-γ1. We propose that the failure of PT-1 to activate γ3-containing complexes in muscle is not an intrinsic feature of such complexes, but is because PT-1 does not increase cellular AMP:ATP ratios in the specific subcellular compartment(s) in which γ3 complexes are located.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/química , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Monofosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Transporte de Elétrons/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA