Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466274

RESUMO

The use of implants can be hampered by chronic inflammatory reactions, which may result in failure of the implanted device. To prevent such an outcome, the present study examines the anti-inflammatory properties of surface coatings made of either hyaluronic acid (HA) or heparin (Hep) in combination with chitosan (Chi) prepared as multilayers through the layer-by-layer (LbL) technique. The properties of glycosaminoglycan (GAG)-modified surfaces were characterized in terms of surface topography, thickness and wettability. Results showed a higher thickness and hydrophilicity after multilayer formation compared to poly (ethylene imine) control samples. Moreover, multilayers containing either HA or Hep dampened the inflammatory response visible by reduced adhesion, formation of multinucleated giant cells (MNGCs) and IL-1ß release, which was studied using THP-1 derived macrophages. Furthermore, investigations regarding the mechanism of anti-inflammatory activity of GAG were focused on nuclear transcription factor-кB (NF-κB)-related signal transduction. Immunofluorescence staining of the p65 subunit of NF-κB and immunoblotting were performed that showed a significant decrease in NF-κB level in macrophages on GAG-based multilayers. Additionally, the association of FITC-labelled GAG was evaluated by confocal laser scanning microscopy and flow cytometry showing that macrophages were able to associate with and take up HA and Hep. Overall, the Hep-based multilayers demonstrated the most suppressive effect making this system most promising to control macrophage activation after implantation of medical devices. The results provide an insight on the anti-inflammatory effects of GAG not only based on their physicochemical properties, but also related to their mechanism of action toward NF-κB signal transduction.


Assuntos
Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Adesão Celular , Heparina/farmacologia , Ácido Hialurônico/farmacologia , NF-kappa B/metabolismo , Materiais Biocompatíveis/química , Endocitose , Células Gigantes/efeitos dos fármacos , Células Gigantes/fisiologia , Heparina/análogos & derivados , Humanos , Ácido Hialurônico/análogos & derivados , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Transdução de Sinais , Células THP-1
2.
Biomacromolecules ; 20(10): 4015-4025, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31449398

RESUMO

Immune response to biomaterials can produce chronic inflammation and fibrosis leading to implant failure, which is related to the surface properties of the biomaterials. This work describes the preparation and characterization of polyelectrolyte multilayer (PEM) coatings that combine the anti-inflammatory activity of heparin as polyanion with the potential release of Naproxen, a nonsteroidal anti-inflammatory drug from polymeric nanoparticles (NP) with cationic surface charge. The polyelectrolyte multilayers were characterized by physical methods to estimate multilayer growth, thickness, zeta potential, and topography. It was found that multilayers with NP had negative zeta potentials and expressed a viscoelastic behavior, while studies of topography showed that nanoparticles formed continuous surface coatings. THP-1-derived macrophages were used to study short-term anti-inflammatory activity (time scale 48 h), showing that PEM that contained heparin reduced cell adhesion and IL1-ß secretion, when compared to those with polystyrenesulfonate, used as alternative polyanion in multilayer formation. On the other hand, the presence of NP in PEM was related to a reduced foreign body giant cell formation after 15 days, when compared to PEM that contained chitosan as alternative polycation, which suggests a long-term anti-inflammatory effect of Naproxen-containing nanoparticles. It was also shown that macrophages were able to take up NP from multilayers, which indicates a release of Naproxen by digestion of NP in the lysosomal compartment. These findings indicate that surface coatings composed of heparin and Naproxen-based NP on implants such as biosensors have the potential to attenuate foreign body reaction after implantation, which may improve the long-term functionality of implants.


Assuntos
Anti-Inflamatórios/química , Heparina/química , Nanopartículas/química , Naproxeno/química , Polieletrólitos/química , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Heparina/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Naproxeno/farmacologia , Polímeros/química , Poliestirenos/química , Propriedades de Superfície/efeitos dos fármacos
3.
Eur J Pharm Biopharm ; 84(1): 172-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23275113

RESUMO

Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging.


Assuntos
Compostos de Alumínio/química , Fosfatos de Cálcio/química , Compostos de Magnésio/química , Óleos/química , Silicatos/química , Adsorção , Microscopia Eletrônica de Varredura/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA