Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1207295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860193

RESUMO

Objective: The approval of immunotherapy (I-O) for the treatment of late-stage non-small cell lung cancer (NSCLC) opened new perspectives in improving survival outcomes. However, survival data have not yet been provided from the period of the Covid-19 pandemic. The aims of our study were to assess and compare survival outcomes of patients with advanced LC receiving systemic anticancer treatment (SACT) before and after the approval of immunotherapy in Hungary, and to examine the impact of pandemic on survival outcomes using data from the Hungarian National Health Insurance Fund (NHIF) database. Methods: This retrospective, longitudinal study included patients aged ≥20 years who were diagnosed with advanced stage lung cancer (LC) (ICD-10 C34) between 1 January 2011 and 31 December 2021 and received SACT treatment without LC-related surgery. Survival rates were evaluated by year of diagnosis, sex, age, and LC histology. Results: In total, 35,416 patients were newly diagnosed with advanced LC and received SACT during the study period (mean age at diagnosis: 62.1-66.3 years). In patients with non-squamous cell carcinoma, 3-year survival was significantly higher among those diagnosed in 2019 vs. 2011-2012 (28.7% [95% CI: 26.4%-30.9%] vs. 14.45% [95% CI: 13.21%-15.69%], respectively). In patients with squamous cell carcinoma, 3-year survival rates were 22.3% (95% CI: 19.4%-25.2%) and 13.37% (95% CI: 11.8%-15.0%) in 2019 and 2011-2012, respectively, the change was statistically significant. Compared to 2011-2012, the hazard ratio of survival change for non-squamous cell carcinoma patients was 0.91, 0.82, and 0.62 in 2015-2016, 2017-2018, and 2019, respectively (p<0.001 for all cases). In the squamous cell carcinoma group, corresponding hazard ratios were 0.93, 0.87, and 0.78, respectively (p<0.001 for all cases). Survival improvements remained significant in both patient populations during the Covid-19 pandemic (2020-2021). No significant improvements were found in the survival of patients with small cell carcinoma. Platinum-based chemotherapy was the most common first-line treatment in all diagnostic periods, however, the proportion of patients receiving first- or second-line immunotherapy significantly increased during the study period. Conclusion: 3-year survival rates of NSCLC almost doubled among patients with non-squamous cell carcinoma and significantly improved at squamous cell carcinoma over the past decade in Hungary. Improvements could potentially be attributable by the introduction of immunotherapy and were not offset by the Covid-19 pandemic.

2.
Front Immunol ; 13: 967914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110849

RESUMO

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Assuntos
MicroRNAs , Receptores de Interleucina-7 , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina-7/genética
3.
Mol Oncol ; 16(15): 2771-2787, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673965

RESUMO

Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Proteínas Quinases Associadas a Fase S , Proteína Supressora de Tumor p53 , Morte Celular , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35343572

RESUMO

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Assuntos
Proteína Adaptadora de Sinalização CRADD , Caspase 2 , Apoptose/fisiologia , Proteína Adaptadora de Sinalização CRADD/genética , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular , Morte Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Inflamação
5.
EMBO Rep ; 21(12): e50893, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33225610

RESUMO

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Camundongos , Ploidias , Proteína Supressora de Tumor p53/genética
6.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502422

RESUMO

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , MicroRNAs/genética , Proteínas Associadas à Matriz Nuclear/genética , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Estrogênio/genética
7.
Dev Cell ; 52(3): 335-349.e7, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31983631

RESUMO

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.


Assuntos
Caspase 2/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/fisiologia , Fatores de Transcrição E2F/fisiologia , Hepatócitos/citologia , Regeneração Hepática , Poliploidia , Proteína Supressora de Tumor p53/fisiologia , Aneuploidia , Animais , Proteína Adaptadora de Sinalização CRADD/fisiologia , Centrossomo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Citocinese , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout
8.
Thromb Res ; 133(2): 285-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24360116

RESUMO

INTRODUCTION: Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. MATERIALS AND METHODS: We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. RESULTS: Agitation and storage of blood samples at 37 °C for 1 hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. CONCLUSIONS: We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses.


Assuntos
Anticoagulantes/metabolismo , Plaquetas/citologia , Micropartículas Derivadas de Células/metabolismo , Ácido Cítrico/metabolismo , Glucose/análogos & derivados , Adolescente , Adulto , Plaquetas/efeitos dos fármacos , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cell Mol Life Sci ; 68(16): 2667-88, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21560073

RESUMO

Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Exossomos/fisiologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/metabolismo , Biomarcadores/metabolismo , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Exossomos/química , Exossomos/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Tamanho da Partícula , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA