Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1288: 342162, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220294

RESUMO

BACKGROUND: In "shotgun" approaches involving high-performance liquid chromatography or capillary zone electrophoresis (CZE), matrix removal prior to sample analysis is considered as an indispensable tool. Despite the fact that CZE offers a high tolerance towards salts, most publications reported on the use of desalting. There seems to be no clear consensus on the utilization of desalting in the CZE-MS community, most probably due to the absence of works addressing the comparison of desalted and non-desalted digests. Our aim was to fill this research gap using protein samples of varying complexity in different sample matrices. RESULTS: First, standard protein digests were analyzed to build the knowledge on the effect of sample clean-up by solid-phase extraction (SPE) pipette tips and the possible stacking phenomena induced by different sample matrices. Desalting led to a somewhat altered peptide profile, the procedure affected mostly the hydrophilic peptides (although not to a devastating extent). Nevertheless, desalting samples allowed remarkable stacking efficiency owing to their low-conductivity sample background, enabling a so-called field-amplified sample stacking phenomenon. Non-desalted samples also produced a stacking event, the mechanism of which is based on transient-isotachophoresis due to the presence of high-mobility ions in the digestion buffer itself. Adding either extra ammonium ions or acetonitrile into the non-desalted digests enhanced the stacking efficiency. A complex sample (yeast cell lysate) was also analyzed with the optimal conditions, which yielded similar tendencies. SIGNIFICANCE: Based on these results, we propose that sample clean-up in the bottom-up sample preparation process prior to CZE-MS analysis can be omitted. The preclusion of desalting can even enhance detection sensitivity, separation efficiency or sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Mapeamento de Peptídeos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Eletroforese Capilar/métodos , Peptídeos/química , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA