Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 16(3): 197-204, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38189171

RESUMO

Aims: Our research aimed to evaluate how the rigidification of the characteristic 3-aminopropyloxy linker by incorporating it into 1,5-benzoxazepines affects the potency of histamine H3 receptor (H3R) antagonists/inverse agonists. This research constitutes a starting point for the full characterization of the pharmacological properties of this group of compounds. Materials & methods: Several 1,5-benzoxazepine derivatives were synthesized and pharmacologically tested as potential H3R antagonist/inverse agonists. In a addition, the effect of the derivatives on acetylcholinesterase and butyrylcholinesterase inhibition and cytotoxicity were tested. Results: The studies indicated 1,5-benzoxazepine containing three carbon side chains as a compound for further modification. Conclusion: Further optimization of the lead structure is necessary, which will favorably affect biological targets.


Assuntos
Histamina , Receptores Histamínicos H3 , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Receptores Histamínicos H3/química , Agonismo Inverso de Drogas , Relação Estrutura-Atividade
2.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242458

RESUMO

This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.

3.
Eur J Med Chem ; 157: 1346-1360, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196059

RESUMO

Type I signal peptidase, with its vital role in bacterial viability, is a promising but underexploited antibacterial drug target. In the light of steadily increasing rates of antimicrobial resistance, we have developed novel macrocyclic lipopeptides, linking P2 and P1' by a boronic ester warhead, capable of inhibiting Escherichia coli type I signal peptidase (EcLepB) and exhibiting good antibacterial activity. Structural modifications of the macrocyclic ring, the peptide sequence and the lipophilic tail led us to 14 novel macrocyclic boronic esters. It could be shown that macrocyclization is well tolerated in terms of EcLepB inhibition and antibacterial activity. Among the synthesized macrocycles, potent enzyme inhibitors in the low nanomolar range (e.g. compound 42f, EcLepB IC50 = 29 nM) were identified also showing good antimicrobial activity (e.g. compound 42b, E. coli WT MIC = 16 µg/mL). The unique macrocyclic boronic esters described here were based on previously published linear lipopeptidic EcLepB inhibitors in an attempt to address cytotoxicity and hemolysis. We show herein that structural changes to the macrocyclic ring influence both the cytotoxicity and hemolytic activity suggesting that the P2 to P1' linker provide means for optimizing off-target effects. However, for the present set of compounds we were not able to separate the antibacterial activity and cytotoxic effect.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ésteres/farmacologia , Células Hep G2 , Humanos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Proteínas de Membrana/metabolismo , Estrutura Molecular , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 25(3): 897-911, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038943

RESUMO

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low µg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.


Assuntos
Desenho de Fármacos , Escherichia coli/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Oligopeptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA