Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
Pharmacol Rep ; 76(1): 127-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082190

RESUMO

BACKGROUND: Chronic inflammation in the course of inflammatory bowel disease may result in colon cancer, or colitis-associated colorectal cancer (CACRC). It is well established that CACRC is associated with oxidative stress and secretion of multiple pro-inflammatory cytokines, e.g. tumor necrosis factor-α. Recently, we proved that the administration of gold(III) complexes resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the antitumor effect of a novel series of gold(III) complexes: TGS 121, 404, 512, 701, 702, and 703. MATERIALS: Analyzed gold(III) complexes were screened in the in vitro studies using colorectal cancer and normal colon epithelium cell lines, SW480, HT-29, and CCD 841 CoN, and in vivo, in the CACRC mouse model. RESULTS: Of all tested complexes, TGS 121, 404, and 702 exhibited the strongest anti-tumor effect in in vitro viability assay of colon cancer cell lines and in in vivo CACRC model, in which these complexes decreased the total number of colonic tumors and macroscopic score. We also evidenced that the mechanism of action was linked to the enzymatic antioxidant system and inflammatory cytokines. CONCLUSIONS: TGS 121, 404, and 702 present anti-tumor potential and are an attractive therapeutic option for colorectal cancer.


Assuntos
Colite , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Ouro/farmacologia , Ouro/metabolismo , Ouro/uso terapêutico , Colite/complicações , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colo , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Células HT29 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL
3.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004405

RESUMO

Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far on the ability of the compounds contained in peppers to inhibit the activity of Aurora A kinase, the overexpression of which is characteristic of cancer development. In this study, molecular docking methods, as well as molecular dynamics, were used, looking for compounds that could inhibit the activity of Aurora A kinase and trying to determine whether there is a relationship between the stimulation of the TRPV1 receptor and the inhibition of Aurora A kinase. We compared our results with anticancer activity studied earlier on MCF-7 cell lines (breast cancer cells). Our research indicates that the compounds contained in peppers can inhibit Aurora A. Further in vitro research is planned to confirm the obtained results.

4.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985668

RESUMO

Camptothecin (CPT), an alkaloid with potent anticancer activity, is still not used in clinical practice due to its high hydrophobicity, toxicity, and poor active-form stability. To address these shortcomings, our research focuses on the encapsulation of this drug in the poly(amidoamine) (PAMAM) dendrimer macromolecule. The PAMAM dendrimer/CPT complex was synthesized and thoroughly characterized. The in vitro drug release study revealed that the drug was released in a slow and controlled manner in acidic and physiological conditions and that more than 80% of the drug was released after 168 h of incubation. Furthermore, it was demonstrated that CPT was released with first-order kinetics and non-Fickian transport. The studies on the hemolytic activity of the synthesized complex indicated that it is hemocompatible for potential intravenous administration at a concentration ≤ 5 µg/mL. Additionally, the developed product was shown to reduce the viability of non-small-cell lung cancer cells (A549) in a concentration- and time-dependent manner, and cancer cells were more susceptible to the complex than normal fibroblasts. Lastly, molecular modeling studies revealed that the lactone or carboxylic forms of CPT had a significant impact on the shape and stability of the complex and that its formation with the lactone form of CPT was more energetically favorable for each subsequent molecule than the carboxylic form. The report represents a systematic and structured approach to develop a PAMAM dendrimer/CPT complex that can be used as an effective drug delivery system (DDS) for the potential treatment of non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dendrímeros , Neoplasias Pulmonares , Humanos , Dendrímeros/farmacologia , Linhagem Celular , Camptotecina/farmacologia
5.
Toxicol In Vitro ; 88: 105556, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681286

RESUMO

Metal-based agents in cancer therapy, like cisplatin and its derivates, have established clinical applications but also can induce serious side effects. Thus, metallotherapeutic alternatives for platinum derivatives are developed and intensively studied. Platinum is replaced by several transition metals including gold. Especially gold (III) complexes can have the same square-planar structure and are isoelectric with platinum (II). Hence, they are developed as potential anti-cancer drugs. Thus, our group projected and developed a group of novel cyanide-based gold (III) complexes. Within this work, we aimed to characterize the safety and effectivity of one of them, TGS 121. TGS 121 in our preliminary work was selective for Ras-hyperactivated cells. Here we studied the effects of the novel complex in cancerous Ras-3 T3 and non-cancerous NIH-3 T3 cells. The complex TGS 121 turned out to be non-toxic for NIH-3 T3 cells and to induce death and alternations in Ras-hyperactivated cells. We found induction of ER stress, mitochondria swelling, proteasome inhibition, and cell cycle block. Moreover, TGS 121 inhibited cell migration and induced the accumulation of perinuclear organelles that was secondary to proteasome inhibition. Results presented in this report suggest that stable gold-cyanide TGS 121 complex is non-toxic, with a targeted mechanism of action and it is promising in anticancer drug discovery.


Assuntos
Antineoplásicos , Complexo de Endopeptidases do Proteassoma , Platina/química , Cianetos/toxicidade , Antineoplásicos/toxicidade , Antineoplásicos/química , Ouro/toxicidade , Ouro/química , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899216

RESUMO

In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.


Assuntos
Estrogênios/química , Estrogênios/metabolismo , Modelos Moleculares , Xenobióticos/química , Xenobióticos/metabolismo , Animais , Humanos , Relação Quantitativa Estrutura-Atividade
7.
J Pharm Biomed Anal ; 149: 160-165, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29121569

RESUMO

The application of various techniques (FT-IR, PXRD, ssNMR) in the analysis of solid dosage forms with low concentration of an API (17-ß-estradiol hemihydrate, EBHH) was tested. PXRD analysis of Estrofem Mite tablets (EMT) confirmed the presence of the main crystalline excipient, α-lactose monohydrate. In the PXRD pattern of EMT the strong background from polycrystalline excipients, i.e. hydroxypropylmethylcellulose and corn starch was observed. FT-IR spectra were characterized by the broad peaks in the 3000-3600cm-1 region of the OH stretching modes coming from multiple hydrogen bonds that are present in the structures of the excipients (α-lactose monohydrate, corn starch) and API. The only technique which unambiguously confirmed the presence of an API in the EMT was solid state NMR. Despite the tabletting process each of the EMT component retained its characteristic features like relaxation time and T1ρI. Due to the possibility of the manipulation in the experimental registration parameters like recycle delay (RD), evolution time (τ) and contact time (CT) it was possible to perform multiple experiments on the same sample of EMT. The most valuable were the inversion recovery CP experiments in which, by setting the proper values of τ, it was possible to selectively observe the signals of the chosen component of the drug formulation. In this study the great potential of solid state NMR in the analysis of solid dosage forms, as the unique technique that combines the possibility of selective observation of the chosen signals with the non destructive character that enables further analysis of the same sample, was confirmed.


Assuntos
Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Difração de Pó/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Química Farmacêutica/instrumentação , Composição de Medicamentos , Estradiol/análise , Estradiol/química , Excipientes/análise , Excipientes/química , Espectroscopia de Ressonância Magnética/instrumentação , Difração de Pó/instrumentação , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Comprimidos/análise , Comprimidos/química , Difração de Raios X/instrumentação
8.
J Pharm Sci ; 104(1): 106-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25393324

RESUMO

Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs.


Assuntos
Modelos Moleculares , Inibidores da Agregação Plaquetária/química , Antagonistas do Receptor Purinérgico P2Y/química , Ticlopidina/análogos & derivados , Química Farmacêutica , Clopidogrel , Medicamentos Falsificados/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polônia , Controle de Qualidade , Teoria Quântica , Sulfatos/química , Comprimidos , Ticlopidina/química , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA