Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4182, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755157

RESUMO

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Assuntos
Antígenos CD19 , Medula Óssea , Interleucinas , Plasmócitos , Humanos , Plasmócitos/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Medula Óssea/imunologia , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Imunidade Humoral/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/citologia , Análise de Célula Única , Adulto , Linfócitos B/imunologia , Células Produtoras de Anticorpos/imunologia , Feminino , Masculino , Vacinação , Pessoa de Meia-Idade , Vacina contra Difteria, Tétano e Coqueluche/imunologia
2.
Eur J Cancer ; 204: 114071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691878

RESUMO

Systemic sclerosis, a severe inflammatory autoimmune disease, shares a common thread with cancer through the underlying mechanism of inflammation. This inflammatory milieu not only drives the immune dysregulation characteristic of autoimmune diseases but also plays a pivotal role in the pathogenesis of cancer. Among the cellular components involved, B cells have emerged as key players in hematologic tumor and autoimmune disease, contributing to immune dysregulation and persistent tissue fibrosis in systemic sclerosis, as well as tumor progression and immune evasion in cancer. Consequently, novel therapeutic strategies targeting B cells hold promise in both conditions. Recent exploration of CD19 CAR T cells in severe systemic sclerosis patients has shown great potential, but also introduced possible risks and drawbacks associated with viral vectors, prolonged CAR T cell persistence, lengthy production timelines, high costs, and the necessity of conditioning patients with organotoxic and fertility-damaging chemotherapy. Given these challenges, alternative CD19-depleting approaches are of high interest for managing severe systemic autoimmune diseases. Here, we present the pioneering use of blinatumomab, a bispecific anti-CD3/anti-CD19 T cell engager in a patient with progressive, severe systemic sclerosis, offering a promising alternative for such challenging cases.


Assuntos
Anticorpos Biespecíficos , Antígenos CD19 , Escleroderma Sistêmico , Humanos , Anticorpos Biespecíficos/uso terapêutico , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/imunologia , Antígenos CD19/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Feminino , Complexo CD3/imunologia , Complexo CD3/metabolismo , Pessoa de Meia-Idade , Imunoterapia Adotiva/métodos
3.
Arthritis Rheumatol ; 74(9): 1556-1568, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35507291

RESUMO

OBJECTIVE: Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast and IgD-CD27- double-negative B cell populations. Previous studies showed that double-negative B cells represent a heterogeneous subset, and further characterization is needed. METHODS: We analyzed 2 independent cohorts of healthy donors and SLE patients, using a combined approach of flow cytometry (for 16 healthy donors and 28 SLE patients) and mass cytometry (for 18 healthy donors and 24 SLE patients) and targeted RNA-Seq analysis. To compare B cell subset formation during the acute immune response versus that during autoimmune disease, we investigated healthy donors at various time points after receipt of the BNT162b2 messenger RNA COVID-19 vaccine and patients with acute SARS-CoV-2 infection, using flow cytometry. RESULTS: We found that IgD-CD27+ switched and atypical IgD-CD27- memory B cells, the levels of which were increased in SLE patients, represented heterogeneous populations composed of 3 different subsets each. CXCR5+CD19intermediate , CXCR5-CD19high , and CXCR5-CD19low populations were found in the switched memory and double-negative compartments, suggesting the relatedness of IgD-CD27+ and IgD-CD27- B cells. We characterized a hitherto unknown and antigen-experienced CXCR5-CD19low subset that was enhanced in SLE patients, had a plasmablast phenotype with diminished B cell receptor responsiveness, and expressed CD38, CD95, CD71, PRDM1, XBP1, and IRF4. Levels of CXCR5-CD19low subsets were increased and correlated with plasmablast frequencies in SLE patients and in healthy donors who received BNT162b2, suggesting their interrelationship and contribution to plasmacytosis. The detection of CXCR5-CD19low B cells among both CD27+ and CD27- populations calls into question the role of CD27 as a reliable marker of B cell differentiation. CONCLUSION: Our data suggest that CXCR5-CD19low B cells are precursors of plasmablasts. Thus, cotargeting this subset may have therapeutic value in SLE.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Lúpus Eritematoso Sistêmico , Antígenos CD19/genética , Antígenos CD19/metabolismo , Subpopulações de Linfócitos B/metabolismo , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Imunoglobulina D , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Fenótipo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , SARS-CoV-2
4.
Front Immunol ; 13: 873217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464469

RESUMO

Antibody-secreting cells (ASCs) contribute to immunity through production of antibodies and cytokines. Identification of specific markers of ASC would allow selective targeting of these cells in several disease contexts. Here, we performed an unbiased, large-scale protein screening, and identified twelve new molecules that are specifically expressed by murine ASCs. Expression of these markers, particularly CD39, CD81, CD130, and CD326, is stable and offers an improved resolution for ASC identification. We accessed their expression in germ-free conditions and in T cell deficient mice, showing that at least in part their expression is controlled by microbial- and T cell-derived signals. Further analysis of lupus mice revealed the presence of a subpopulation of LAG-3- plasma cells, co-expressing high amounts of CD39 and CD326 in the bone marrow. This population was IgM+ and correlated with IgM anti-dsDNA autoantibodies in sera. Importantly, we found that CD39, CD81, CD130, and CD326 are also expressed by human peripheral blood and bone marrow ASCs. Our data provide innovative insights into ASC biology and function in mice and human, and identify an intriguing BM specific CD39++CD326++ ASC subpopulation in autoimmunity.


Assuntos
Medula Óssea , Plasmócitos , Animais , Anticorpos Antinucleares , Células Produtoras de Anticorpos , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Humanos , Imunoglobulina M , Camundongos , Plasmócitos/metabolismo
5.
Front Immunol ; 12: 635615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777025

RESUMO

Circulating CD11c+ B cells are a key phenomenon in certain types of autoimmunity but have also been described in the context of regular immune responses (i.e., infections, vaccination). Using mass cytometry to profile 46 different markers on individual immune cells, we systematically initially confirmed the presence of increased CD11c+ B cells in the blood of systemic lupus erythematosus (SLE) patients. Notably, significant differences in the expression of CD21, CD27, and CD38 became apparent between CD11c- and CD11c+ B cells. We observed direct correlation of the frequency of CD21-CD27- B cells and CD21-CD38- B cells with CD11c+ B cells, which were most pronounced in SLE compared to primary Sjögren's syndrome patients (pSS) and healthy donors (HD). Thus, CD11c+ B cells resided mainly within memory subsets and were enriched in CD27-IgD-, CD21-CD27-, and CD21-CD38- B cell phenotypes. CD11c+ B cells from all donor groups (SLE, pSS, and HD) showed enhanced CD69, Ki-67, CD45RO, CD45RA, and CD19 expression, whereas the membrane expression of CXCR5 and CD21 were diminished. Notably, SLE CD11c+ B cells showed enhanced expression of the checkpoint molecules CD86, PD1, PDL1, CD137, VISTA, and CTLA-4 compared to HD. The substantial increase of CD11c+ B cells with a CD21- phenotype co-expressing distinct activation and checkpoint markers, points to a quantitative increased alternate (extrafollicular) B cell activation route possibly related to abnormal immune regulation as seen under the striking inflammatory conditions of SLE which shows a characteristic PD-1/PD-L1 upregulation.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Antígeno CD11c/sangue , Citometria de Fluxo , Imunofenotipagem , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Síndrome de Sjogren/imunologia , ADP-Ribosil Ciclase 1/sangue , Linfócitos B/metabolismo , Antígeno B7-H1/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Glicoproteínas de Membrana/sangue , Fenótipo , Receptor de Morte Celular Programada 1/sangue , Receptores de Complemento 3d/sangue , Síndrome de Sjogren/sangue , Síndrome de Sjogren/diagnóstico , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue
6.
RMD Open ; 6(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32675278

RESUMO

Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.


Assuntos
Linfócitos B/imunologia , Anergia Clonal/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Ativação Linfocitária/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores , Antígenos CD40/metabolismo , Diferenciação Celular/imunologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo
7.
Front Immunol ; 10: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740098

RESUMO

Background: Pentraxin3 (PTX3) is overexpressed in kidneys of patients developing lupus nephritis (LN). Active LN is associated with reduced anti-PTX3 antibodies. However, abnormalities of B cell differentiation against PTX3 have not been characterized in systemic lupus erythematosus (SLE). Objective: Characterization of PTX3-specific (PTX3+) B cells in peripheral blood of SLE patients with or without LN and healthy donors (HD). Patients and Methods: SLE patients without LN, biopsy-proven LN and matched HD were analyzed. Active LN was defined as proteinuria>0.5 g/day or CrCl<60 ml/min/1.73 m2 with active urinary sediment. Peripheral B cells were analyzed for direct PTX3 binding by flow cytometry using PTX3 labeled with cyanine 5 (Cy5) and phycoerythrin (PE). Results: Initially, a flow cytometry based assay to identify PTX3+ B cells was developed by demonstrating simultaneous binding of PTX3-Cy5 and PTX3-PE. Specificity of B cells was validated by blocking experiments using unlabeled PTX3. We could identify circulating PTX3+ B-cells in HD and patients. Notably, LN patients showed a significantly diminished number of PTX3+ B cells (SLE vs. LN p = 0.033; HD vs. LN p = 0.008). This decrease was identified in naïve and memory B cell compartments (naïve: SLE vs. LN p = 0.028; HD vs. LN p = 0.0001; memory: SLE vs. LN p = 0.038, HD vs. LN p = 0.011). Conclusions: Decreased PTX3+ B cells in LN within the naïve and memory compartment suggest their negative selection at early stages of B cell development potentially related to a decreased regulatory function. PTX3+ B cells could candidate for autoantigen-defined regulatory B cells as a striking abnormality of LN patients.


Assuntos
Linfócitos B/metabolismo , Proteína C-Reativa/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Nefrite Lúpica/sangue , Componente Amiloide P Sérico/metabolismo , Adulto , Autoanticorpos/sangue , Autoantígenos/metabolismo , Biomarcadores/metabolismo , Proteína C-Reativa/química , Proteína C-Reativa/imunologia , Carbocianinas/química , Feminino , Citometria de Fluxo/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Ficoeritrina/química , Componente Amiloide P Sérico/química , Componente Amiloide P Sérico/imunologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA