Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(2): 241-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37540449

RESUMO

PURPOSE: Radiological follow-up of oncology patients requires the quantitative analysis of lesion changes in longitudinal imaging studies, which is time-consuming, requires expertise, and is subject to variability. This paper presents a comprehensive graph-based method for the automatic detection and classification of lesion changes in current and prior CT scans. METHODS: The inputs are the current and prior CT scans and their organ and lesion segmentations. Classification of lesion changes is formalized as bipartite graph matching where lesion pairings are computed by adaptive overlap-based lesion matching. Six types of lesion changes are computed by connected components analysis. The method was evaluated on 208 pairs of lung and liver CT scans from 57 patients with 4600 lesions, 1713 lesion matchings and 2887 lesion changes. Ground-truth lesion segmentations, lesion matchings and lesion changes were created by an expert radiologist. RESULTS: Our method yields a lesion matching rate accuracy of 99.7% (394/395) and 95.0% (1252/1318) for the lung and liver datasets. Precision and recall are > 0.99 and 0.94 and 0.95 (respectively) for the detection of lesion changes. The analysis of lesion changes helped the radiologist detect 48 missed lesions and 8 spurious lesions in the input ground-truth lesion datasets. CONCLUSION: The classification of lesion classification provides the clinician with a readily accessible and intuitive identification and classification of the lesion changes and their patterns in support of clinical decision making. Comprehensive automatic computer-aided lesion matching and analysis of lesion changes may improve quantitative follow-up and evaluation of disease status, assessment of treatment efficacy and response to therapy.


Assuntos
Algoritmos , Neoplasias Hepáticas , Humanos , Seguimentos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia
2.
Eur Radiol ; 33(12): 9320-9327, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37480549

RESUMO

OBJECTIVES: To compare liver metastases changes in CT assessed by radiologists using RECIST 1.1 and with aided simultaneous deep learning-based volumetric lesion changes analysis. METHODS: A total of 86 abdominal CT studies from 43 patients (prior and current scans) of abdominal CT scans of patients with 1041 liver metastases (mean = 12.1, std = 11.9, range 1-49) were analyzed. Two radiologists performed readings of all pairs; conventional with RECIST 1.1 and with computer-aided assessment. For computer-aided reading, we used a novel simultaneous multi-channel 3D R2U-Net classifier trained and validated on other scans. The reference was established by having an expert radiologist validate the computed lesion detection and segmentation. The results were then verified and modified as needed by another independent radiologist. The primary outcome measure was the disease status assessment with the conventional and the computer-aided readings with respect to the reference. RESULTS: For conventional and computer-aided reading, there was a difference in disease status classification in 40 out of 86 (46.51%) and 10 out of 86 (27.9%) CT studies with respect to the reference, respectively. Computer-aided reading improved conventional reading in 30 CT studies by 34.5% for two readers (23.2% and 46.51%) with respect to the reference standard. The main reason for the difference between the two readings was lesion volume differences (p = 0.01). CONCLUSIONS: AI-based computer-aided analysis of liver metastases may improve the accuracy of the evaluation of neoplastic liver disease status. CLINICAL RELEVANCE STATEMENT: AI may aid radiologists to improve the accuracy of evaluating changes over time in metastasis of the liver. KEY POINTS: • Classification of liver metastasis changes improved significantly in one-third of the cases with an automatically generated comprehensive lesion and lesion changes report. • Simultaneous deep learning changes detection and volumetric assessment may improve the evaluation of liver metastases temporal changes potentially improving disease management.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Critérios de Avaliação de Resposta em Tumores Sólidos , Seguimentos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/secundário
3.
Med Image Anal ; 84: 102680, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481607

RESUMO

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.


Assuntos
Benchmarking , Neoplasias Hepáticas , Humanos , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
4.
Med Image Anal ; 83: 102675, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334393

RESUMO

The identification and quantification of liver lesions changes in longitudinal contrast enhanced CT (CECT) scans is required to evaluate disease status and to determine treatment efficacy in support of clinical decision-making. This paper describes a fully automatic end-to-end pipeline for liver lesion changes analysis in consecutive (prior and current) abdominal CECT scans of oncology patients. The three key novelties are: (1) SimU-Net, a simultaneous multi-channel 3D R2U-Net model trained on pairs of registered scans of each patient that identifies the liver lesions and their changes based on the lesion and healthy tissue appearance differences; (2) a model-based bipartite graph lesions matching method for the analysis of lesion changes at the lesion level; (3) a method for longitudinal analysis of one or more of consecutive scans of a patient based on SimU-Net that handles major liver deformations and incorporates lesion segmentations from previous analysis. To validate our methods, five experimental studies were conducted on a unique dataset of 3491 liver lesions in 735 pairs from 218 clinical abdominal CECT scans of 71 patients with metastatic disease manually delineated by an expert radiologist. The pipeline with the SimU-Net model, trained and validated on 385 pairs and tested on 249 pairs, yields a mean lesion detection recall of 0.86±0.14, a precision of 0.74±0.23 and a lesion segmentation Dice of 0.82±0.14 for lesions > 5 mm. This outperforms a reference standalone 3D R2-UNet mdel that analyzes each scan individually by ∼50% in precision with similar recall and Dice score on the same training and test datasets. For lesions matching, the precision is 0.86±0.18 and the recall is 0.90±0.15. For lesion classification, the specificity is 0.97±0.07, the precision is 0.85±0.31, and the recall is 0.86±0.23. Our new methods provide accurate and comprehensive results that may help reduce radiologists' time and effort and improve radiological oncology evaluation.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA