Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 22(8): 1345-1356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285614

RESUMO

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Neuroglia/virologia , Neurônios/virologia , Animais , Técnicas de Transferência de Genes , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Retina/virologia
2.
Brain Res Bull ; 97: 16-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707857

RESUMO

Pharmacological and functional data suggest the existence of uridine (Urd) receptors in the central nervous system (CNS). In the present study, simultaneous extracellular single unit recording and microiontophoretic injection of the pyrimidine nucleoside Urd was used to provide evidence for the presence of Urd-sensitive neurons in the thalamus and the cerebral cortex of Long Evans rats. Twenty-two neurons in the thalamus (24% of recorded neurons) and 17 neurons in the cortex (55%) responded to the direct iontophoresis of Urd. The majority of Urd-sensitive neurons in the thalamus and cortex (82% and 59%, respectively) increased their firing rate in response to Urd. In contrary, adenosine (Ado) and uridine 5'-triphosphate (UTP) decreased the firing rate of all responding neurons in the thalamus, and the majority of responding neurons in the cortex (83% and 87%, respectively). Functional relevance of Urd-sensitive neurons was investigated in spontaneously epileptic freely moving Long Evans and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Intraperitoneal (i.p.) injection of 500mg/kg Urd decreased epileptic activity (210-270min after injection) in both rat strains. Intraperitoneal administration of 1000mg/kg Urd decreased the number of spike-wave discharges (SWDs) between 150-270min and 90-270min in Long Evans and WAG/Rij rats, respectively. The effect of Urd was long-lasting in both rat strains as the higher dose significantly decreased the number of SWDs even 24h after Urd injection. The present results suggest that Urd-sensitive neurons in the thalamus and the cerebral cortex may play a role in the antiepileptic action of Urd possibly via modulation of thalamocortical neuronal circuits.


Assuntos
Anticonvulsivantes/farmacologia , Inibição Neural , Neurônios/efeitos dos fármacos , Uridina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ratos Wistar , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
3.
Vis Neurosci ; 24(5): 733-43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17986362

RESUMO

The role of intracellular organelles in Ca2+ homeostasis was studied in salamander rod and cone photoreceptors under conditions that simulate photoreceptor activation by darkness and light. Sustained depolarization evoked a Ca2+ gradient between the cell body and ellipsoid regions of the inner segment (IS). The standing pattern of calcium fluxes was created by interactions between the plasma membrane, endoplasmic reticulum (ER), and mitochondria. Pharmacological experiments suggested that mitochondria modulate both baseline [Ca2+]i in hyperpolarized cells as well as kinetics of Ca2+ entry via L type Ca2+ channels in cell bodies and ellipsoids of depolarized rods and cones. Inhibition of mitochondrial Ca2+ sequestration by antimycin/oligomycin caused a three-fold reduction in the amount of Ca2+ accumulated into intracellular organelles in both cell bodies and ellipsoids. A further 50% decrease in intracellular Ca2+ content within cell bodies, but not ellipsoids, was observed after suppression of SERCA-mediated Ca2+ uptake into the ER. Inhibition of Ca2+ sequestration into the endoplasmic reticulum by thapsigargin or cyclopiazonic acid decreased the magnitude and kinetics of depolarization-evoked Ca2+ signals in cell bodies of rods and cones and decreased the amount of Ca2+ accumulated into internal stores. These results suggest that steady-state [Ca2+]i in photoreceptors is regulated in a region-specific manner, with the ER contribution predominant in the cell body and mitochondrial buffering [Ca2+] the ellipsoid. Local [Ca2+]i levels are set by interactions between the plasma membrane Ca2+ channels and transporters, ER and mitochondria. Mitochondria are likely to play an essential role in temporal and spatial buffering of photoreceptor Ca2+.


Assuntos
Cálcio/fisiologia , Homeostase/fisiologia , Organelas/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Trifosfato de Adenosina/fisiologia , Ambystoma , Animais , Sinalização do Cálcio/fisiologia , Forma Celular/fisiologia , Interpretação Estatística de Dados , Eletrofisiologia , Larva/fisiologia , Mitocôndrias/metabolismo
4.
Cell Mol Neurobiol ; 26(4-6): 833-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16897364

RESUMO

1. Nucleosides potentially participate in the neuronal functions of the brain. However, their distribution and changes in their concentrations in the human brain is not known. For better understanding of nucleoside functions, changes of nucleoside concentrations by age and a complete map of nucleoside levels in the human brain are actual requirements. 2. We used post mortem human brain samples in the experiments and applied a recently modified HPLC method for the measurement of nucleosides. To estimate concentrations and patterns of nucleosides in alive human brain we used a recently developed reverse extrapolation method and multivariate statistical analyses. 3. We analyzed four nucleosides and three nucleobases in human cerebellar, cerebral cortices and in white matter in young and old adults. Average concentrations of the 308 samples investigated (mean+/-SEM) were the following (pmol/mg wet tissue weight): adenosine 10.3+/-0.6, inosine 69.5+/-1.7, guanosine 13.5+/-0.4, uridine 52.4+/-1.2, uracil 8.4+/-0.3, hypoxanthine 108.6+/-2.0 and xanthine 54.8+/-1.3. We also demonstrated that concentrations of inosine and adenosine in the cerebral cortex and guanosine in the cerebral white matter are age-dependent. 4. Using multivariate statistical analyses and degradation coefficients, we present an uneven regional distribution of nucleosides in the human brain. The methods presented here allow to creation of a nucleoside map of the human brain by measuring the concentration of nucleosides in microdissected tissue samples. Our data support a functional role for nucleosides in the brain.


Assuntos
Córtex Cerebral/química , Nucleosídeos/análise , Purinas/análise , Pirimidinas/análise , Telencéfalo/química , Adulto , Fatores Etários , Idoso de 80 Anos ou mais , Química Encefálica , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Humanos , Mudanças Depois da Morte
5.
J Neurosci Methods ; 148(1): 88-93, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16054224

RESUMO

There is an increasing attention paid for nucleoside metabolism and changes of nucleoside concentrations in human brain because of its pathological and physiological relevance. In order to determine the post mortem degradation of nucleosides and nucleoside metabolites, the concentrations of four nucleosides and three nucleobases were measured in rat and neurosurgical human cerebral cortical samples with 30s to 24h post mortem delay. Adenosine degradation coefficient (a multiplying factor for calculating concentrations of investigated substances for the living state) was 0.886 for human brain at 2 h post mortem time, while it was 1.976 for rats. Hypoxanthine, an adenosine degradation product had coefficients 0.564 for human brain and 0.812 for the rat brain. We provide data and degradation coefficients for the concentrations of adenosine, guanosine, inosine, uridine, uracil, hypoxanthine and xanthine with 2, 4, 6 and 24 h post mortem delay. We also report a method how to validate human neurosurgical brain samples in terms of sample preparation and statistical analysis.


Assuntos
Encéfalo/metabolismo , Nucleosídeos/metabolismo , Mudanças Depois da Morte , Idoso , Animais , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nucleosídeos/classificação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA