Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986764

RESUMO

Subglottic stenosis represents a challenging clinical condition in otolaryngology. Although patients often experience improvement following endoscopic surgery, recurrence rates remain high. Pursuing measures to maintain surgical results and prevent recurrence is thus necessary. Steroids therapy is considered effective in preventing restenosis. Currently, however, the ability of trans-oral steroid inhalation to reach and affect the stenotic subglottic area in a tracheotomized patient is largely negligible. In the present study, we describe a novel trans-tracheostomal retrograde inhalation technique to increase corticosteroid deposition in the subglottic area. We detail our preliminary clinical outcomes in four patients treated with trans-tracheostomal corticosteroid inhalation via a metered dose inhaler (MDI) following surgery. Concurrently, we leverage computational fluid-particle dynamics (CFPD) simulations in an extra-thoracic 3D airway model to gain insight on possible advantages of such a technique over traditional trans-oral inhalation in augmenting aerosol deposition in the stenotic subglottic region. Our numerical simulations show that for an arbitrary inhaled dose (aerosols spanning 1-12 µm), the deposition (mass) fraction in the subglottis is over 30 times higher in the retrograde trans-tracheostomal technique compared to the trans-oral inhalation technique (3.63% vs. 0.11%). Importantly, while a major portion of inhaled aerosols (66.43%) in the trans-oral inhalation maneuver are transported distally past the trachea, the vast majority of aerosols (85.10%) exit through the mouth during trans-tracheostomal inhalation, thereby avoiding undesired deposition in the broader lungs. Overall, the proposed trans-tracheostomal retrograde inhalation technique increases aerosol deposition rates in the subglottis with minor lower-airway deposition compared to the trans-oral inhalation technique. This novel technique could play an important role in preventing restenosis of the subglottis.

2.
Drug Deliv ; 26(1): 1039-1048, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31691600

RESUMO

Tuberculosis (TB) has gained attention over the past few decades by becoming one of the top ten leading causes of death worldwide. This infectious disease of the lungs is orally treated with a medicinal armamentarium. However, this route of administration passes through the body's first-pass metabolism which reduces the drugs' bioavailability and toxicates the liver and kidneys. Inhalation therapy represents an alternative to the oral route, but low deposition efficiencies of delivery devices such as nebulizers and dry powder inhalers render it challenging as a favorable therapy. It was hypothesized that by encapsulating two potent TB-agents, i.e. Q203 and bedaquiline, that inhibit the oxidative phosphorylation of the bacteria together with a magnetic targeting component, superparamagnetic iron oxides, into a poly (D, L-lactide-co-glycolide) (PDLG) carrier using a single emulsion technique, the treatment of TB can be a better therapeutic alternative. This simple fabrication method achieved a homogenous distribution of 500 nm particles with a magnetic saturation of 28 emu/g. Such particles were shown to be magnetically susceptible in an in-vitro assessment, viable against A549 epithelial cells, and were able to reduce two log bacteria counts of the Bacillus Calmette-Guerin (BCG) organism. Furthermore, through the use of an external magnet, our in-silico Computational Fluid Dynamics (CFD) simulations support the notion of yielding 100% deposition in the deep lungs. Our proposed inhalation therapy circumvents challenges related to oral and respiratory treatments and embodies a highly favorable new treatment regime.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/química , Compostos Férricos/química , Imidazóis/química , Pulmão/efeitos dos fármacos , Nanopartículas de Magnetita/química , Piperidinas/química , Piridinas/química , Tuberculose/tratamento farmacológico , Células A549 , Administração por Inalação , Antituberculosos/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Humanos , Pulmão/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/metabolismo
3.
Clin Biomech (Bristol, Avon) ; 66: 50-59, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29217332

RESUMO

BACKGROUND: High frequency oscillatory ventilation is often used for lung support in premature neonates suffering from respiratory distress syndrome. Despite its broad use in neonatal intensive care units, there are to date no accepted protocols for the choice of appropriate ventilation parameter settings. In this context, the underlying mass transport mechanisms are still not fully understood. METHODS: We revisit the question of flow phenomena under conventional mechanical ventilation and high frequency oscillatory ventilation in an anatomically-inspired model of neonatal conductive airways spanning the first few airway generations. We first perform at true scale in vitro particle image velocimetry measurements of respiratory flow patterns. Next, we explore in silico convective mass transport in computational fluid dynamics simulations by implementing Lagrangian tracking of tracer boli, where the ventilatory flow rate is fixed. FINDINGS: Particle image velocimetry measurements at eight representative phase angles of a breathing cycle reveal similar flow patterns at peak velocity and during deceleration phases for conventional mechanical ventilation and high frequency oscillatory ventilation. Characteristic differences occur during the acceleration and flow reversal phases. Net displacements of the tracer particles rapidly reach asymptotic behaviour over cumulative breathing cycles and suggest a linear relation between tidal volume and convective mass transport. INTERPRETATION: The linear relation observed suggests that differences in flow characteristics between conventional mechanical ventilation and high frequency oscillatory ventilation conditions do not substantially influence convective mass transport mechanisms. Lower tidal volumes thus cannot be compensated straightforwardly by selecting higher frequencies to maintain similar ventilation efficiencies.


Assuntos
Ventilação de Alta Frequência , Pulmão/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Simulação por Computador , Desenho Assistido por Computador , Humanos , Hidrodinâmica , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Lactente , Lesão Pulmonar/fisiopatologia , Modelos Anatômicos , Oscilometria , Tamanho da Partícula , Ventilação
4.
Int J Nanomedicine ; 11: 3385-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547034

RESUMO

BACKGROUND: It has been hypothesized that by coupling magnetic particles to inhaled therapeutics, the ability to target specific lung regions (eg, only acinar deposition), or even more so specific points in the lung (eg, tumor targeting), can be substantially improved. Although this method has been proven feasible in seminal in vivo studies, there is still a wide gap in our basic understanding of the transport phenomena of magnetic particles in the pulmonary acinar regions of the lungs, including particle dynamics and deposition characteristics. METHODS: Here, we present computational fluid dynamics-discrete element method simulations of magnetically loaded microdroplet carriers in an anatomically inspired, space-filling, multi-generation acinar airway tree. Breathing motion is modeled by kinematic sinusoidal displacements of the acinar walls, during which droplets are inhaled and exhaled. Particle dynamics are governed by viscous drag, gravity, and Brownian motion as well as the external magnetic force. In particular, we examined the roles of droplet diameter and volume fraction of magnetic material within the droplets under two different breathing maneuvers. RESULTS AND DISCUSSION: Our results indicate that by using magnetic-loaded droplets, 100% of the particles that enter are deposited in the acinar region. This is consistent across all particle sizes investigated (ie, 0.5-3.0 µm). This is best achieved through a deep inhalation maneuver combined with a breath-hold. Particles are found to penetrate deep into the acinus and disperse well, while the required amount of magnetic material is maintained low (<2.5%). Although particles in the size range of ~90-500 nm typically show the lowest deposition fractions, our results suggest that this feature could be leveraged to augment targeted delivery.


Assuntos
Portadores de Fármacos/administração & dosagem , Pulmão/efeitos dos fármacos , Modelos Biológicos , Administração por Inalação , Aerossóis/administração & dosagem , Aerossóis/química , Suspensão da Respiração , Simulação por Computador , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Hidrodinâmica , Fenômenos Magnéticos , Nebulizadores e Vaporizadores , Tamanho da Partícula , Alvéolos Pulmonares/efeitos dos fármacos , Respiração
5.
Am J Physiol Lung Cell Mol Physiol ; 306(7): L672-83, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487389

RESUMO

We investigated the role of flow-induced shear stress on the mechanisms regulating surfactant secretion in type II alveolar epithelial cells (ATII) using microfluidic models. Following flow stimulation spanning a range of wall shear stress (WSS) magnitudes, monolayers of ATII (MLE-12 and A549) cells were examined for surfactant secretion by evaluating essential steps of the process, including relative changes in the number of fusion events of lamellar bodies (LBs) with the plasma membrane (PM) and intracellular redistribution of LBs. F-actin cytoskeleton and calcium levels were analyzed in A549 cells subjected to WSS spanning 4-20 dyn/cm(2). Results reveal an enhancement in LB fusion events with the PM in MLE-12 cells upon flow stimulation, whereas A549 cells exhibit no foreseeable changes in the monitored number of fusion events for WSS levels ranging up to a threshold of ∼8 dyn/cm(2); above this threshold, we witness instead a decrease in LB fusion events in A549 cells. However, patterns of LB redistribution suggest that WSS can potentially serve as a stimulus for A549 cells to trigger the intracellular transport of LBs toward the cell periphery. This observation is accompanied by a fragmentation of F-actin, indicating that disorganization of the F-actin cytoskeleton might act as a limiting factor for LB fusion events. Moreover, we note a rise in cytosolic calcium ([Ca(2+)]c) levels following stimulation of A549 cells with WSS magnitudes ranging near or above the experimental threshold. Overall, WSS stimulation can influence key components of molecular machinery for regulated surfactant secretion in ATII cells in vitro.


Assuntos
Células Epiteliais/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Exocitose , Humanos , Técnicas In Vitro , Camundongos , Microfluídica , Organelas/metabolismo , Estresse Fisiológico
6.
J Biomech ; 42(6): 789-92, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19272603

RESUMO

To investigate the relative importance of convection and diffusion in the transport of oxygen in the pulmonary acinus, it is often useful to locate the transition from convection-dominated to diffusion-dominated transport. Traditionally, this is done by estimating the values of a Peclet number. This dimensionless number compares the bulk ductal flow velocity at an acinar generation with a diffusion velocity over a characteristic length scale. Here, we revisit the convection-diffusion transition by comparing the relative importance of convective and diffusive lengths. We introduce the ratio of such lengths (L(conv)/L(diff)) to quantify the extent of convective transport in the acinus over an inhalation phase. We distinguish between convection along the acinar airways and within alveoli, respectively. Results for L(conv)/L(diff) suggest that convection in acinar ducts may play a potential role in more peripheral airways compared with values obtained for a Peclet number. Within alveoli, however, independent of acinar depth, oxygen transport is governed by diffusion as soon as molecules enter within alveolar cavities.


Assuntos
Gases/metabolismo , Pulmão/metabolismo , Transporte Biológico , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA