Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(16): 3856-3869, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606880

RESUMO

We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Prolina , Dobramento de Proteína , Prolina/química , Peptídeos/química , Conformação Proteica em alfa-Hélice , Alanina/química , Ligação de Hidrogênio , Fricção
2.
J Biomol Struct Dyn ; 41(21): 11671-11680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36591705

RESUMO

We have performed molecular dynamics (MD) and replica-exchange (REMD) simulations of folding of the GB1 hairpin peptide in aqueous solution. REMD results were consistent with a cooperative zipper folding model. 120 µs MD trajectories at 320 K yielded relaxation times of 1.8 µs and 100 ns, with the slower assigned to global folding. The MD folding/unfolding transitions also followed the cooperative zipper model, specifying nucleation at the central turn followed by consecutive hydrogen bond formation. Formation of hydrogen bonds and hydrophobic contacts were highly correlated. Coarse-grained kinetic models constructed with the Optimal Dimensionality Reduction (ODR) approach found a folding time of 3.3 µs and unfolding time of 4.0 µs. Additionally, relaxation times in the 130-170 ns range could be assigned to formation of the transition state and off-path intermediates. The unfolded state was the most highly populated and, significantly, most heterogenous, assembling the largest number of microstates, primarily composed of extended and turn structures. The folded state was also heterogenous, but a to a lesser degree, involving the fully folded and partially folded in-register hairpins at early stages of the zipper pathway. The transition state corresponded to the nucleated hairpin, with central turn and first beta-sheet hydrogen bond, while the off-path intermediates were off-register partial hairpins. Our simulation results were in excellent agreement with experimental data on folded fraction, relaxation time and folding mechanism. The new findings from this work suggest a highly cooperative zipper folding mechanism, nascent hairpin transition state and ∼100 ns relaxation related to intermediate formation.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Peptídeos/química , Água , Cinética , Termodinâmica , Ligação de Hidrogênio
3.
J Phys Chem B ; 126(44): 8901-8912, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300354

RESUMO

In this paper we derive analytically from molecular dynamics (MD) simulations the friction coefficients related to conformational transitions within several model peptides with α-helical structures. We study a series of alanine peptides with various length from ALA5 to ALA21 as well as their two derivatives, the (AAQAA)3 peptide and a 13-residue KR1 peptide that is a derivative of the (AAQAA)2 peptide with the formula GN(AAQAA)2G. We use two kinds of approaches to derive their friction coefficients. In the local approach, friction associated with fluctuations of single hydrogen bonds are studied. In the second approach, friction coefficients associated with a folding transitions within the studied peptides are obtained. In both cases, the respective friction coefficients differentiated very well the subtle structural changes between studied peptides and compared favorably to experimentally available data.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Conformação Proteica em alfa-Hélice , Fricção , Solventes/química , Peptídeos/química , Ligação de Hidrogênio , Dobramento de Proteína
4.
Nanotechnology ; 23(17): 175101, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481314

RESUMO

We describe a complete noise analysis and application of a custom made AFM force spectroscopy setup on pulling a recombinant protein with an NRR domain of mouse Notch 1. Our table top AFM setup is affordable, has an open architecture, and is easily transferable to other laboratories. Its calculated noise characteristics are dominated by the Brownian noise with 2% non-Brownian components integrated over the first thermally induced resonance of a typical cantilever. For a typical SiN cantilever with a force constant of ~15 pN nm(-1) and in water the force sensitivity and resolution are less than 10 pN, and the corresponding deflection sensitivities are less than 100 pm Hz(-1/2). Also, we obtain a sub-ms time resolution in detecting the protein length change, and only few ms cantilever response times as measured in the force clamp mode on a well-known protein standard. Using this setup we investigate force-induced conformational transitions in the NRR region of a mouse Notch 1. Notch is an important protein related to leukemia and breast cancers in humans. We demonstrate that it is feasible to develop AFM-based studies of the force-induced conformational transitions in Notch. Our results match recent steered molecular dynamics simulations of the NRR unfolding and constitute a first step towards a detailed study of Notch activation with AFM.


Assuntos
Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Nanotecnologia/instrumentação , Receptor Notch1/química , Receptor Notch1/metabolismo , Animais , Fenômenos Biomecânicos/fisiologia , Camundongos , Simulação de Dinâmica Molecular , Nanotecnologia/métodos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Langmuir ; 24(4): 1356-64, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17999545

RESUMO

Force-clamp spectroscopy is a novel technique for studying mechanochemistry at the single-bond level. Single disulfide bond reduction events are accurately detected as stepwise increases in the length of polyproteins that contain disulfide bonds and that are stretched at a constant force with the cantilever of an atomic force microscope (AFM). The kinetics of this reaction has been measured from single-exponential fits to ensemble averages of the reduction events. However, exponential fits are notoriously ambiguous to use in cases of kinetic data showing multiple reaction pathways. Here we introduce a dwell time analysis technique, of widespread use in the single ion channel field, that we apply to the examination of the kinetics of reduction of disulfide bonds measured from single-molecule force-clamp spectroscopy traces. In this technique, exponentially distributed dwell time data is plotted as a histogram with a logarithmic time scale and a square root ordinate. The advantage of logarithmic histograms is that exponentially distributed dwell times appear as well-defined peaks in the distribution, greatly enhancing our ability to detect multiple kinetic pathways. We apply this technique to examine the distribution of dwell times of 4488 single disulfide bond reduction events measured in the presence of two very different kinds of reducing agents: tris-(2-carboxyethyl)phosphine hydrochloride (TCEP) and the enzyme thioredoxin (TRX). A different clamping force is used for each reducing agent to obtain distributions of dwell times on a similar time scale. In the case of TCEP, the logarithmic histogram of dwell times showed a single peak, corresponding to a single reaction mechanism. By contrast, similar experiments done with TRX showed two well-separated peaks, marking two distinct modes of chemical reduction operating simultaneously. These experiments demonstrate that dwell time analysis techniques are a powerful approach to studying chemical reactions at the single-molecule level.


Assuntos
Proteínas Musculares/química , Fosfinas/química , Tiorredoxinas/química , Dissulfetos/química , Humanos , Cinética , Microscopia de Força Atômica/métodos , Proteínas Musculares/genética , Conformação Proteica , Análise Espectral/instrumentação , Análise Espectral/métodos , Estresse Mecânico , Tiorredoxinas/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA