RESUMO
Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.
Assuntos
Tecido Adiposo Marrom , Cisteína , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Cisteína/metabolismo , Metabolismo Energético , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMO
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteogenômica , Neoplasias Encefálicas/imunologia , Criança , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Glioma/genética , Glioma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genéticaRESUMO
Oxidation of cysteine thiols by physiological reactive oxygen species (ROS) initiates thermogenesis in brown and beige adipose tissues. Cellular selenocysteines, where sulfur is replaced with selenium, exhibit enhanced reactivity with ROS. Despite their critical roles in physiology, methods for broad and direct detection of proteogenic selenocysteines are limited. Here we developed a mass spectrometric method to interrogate incorporation of selenium into proteins. Unexpectedly, this approach revealed facultative incorporation of selenium as selenocysteine or selenomethionine into proteins that lack canonical encoding for selenocysteine. Selenium was selectively incorporated into regulatory sites on key metabolic proteins, including as selenocysteine-replacing cysteine at position 253 in uncoupling protein 1 (UCP1). This facultative utilization of selenium was initiated by increasing cellular levels of organic, but not inorganic, forms of selenium. Remarkably, dietary selenium supplementation elevated facultative incorporation into UCP1, elevated energy expenditure through thermogenic adipose tissue, and protected against obesity. Together, these findings reveal the existence of facultative protein selenation, which correlates with impacts on thermogenic adipocyte function and presumably other biological processes as well.
Assuntos
Tecido Adiposo/metabolismo , Cisteína/metabolismo , Obesidade/metabolismo , Selênio/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo/fisiologia , Animais , Células Cultivadas , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.
Assuntos
Envelhecimento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Cisteína/metabolismo , Humanos , Camundongos , Especificidade de Órgãos/genética , Oxirredução , Estresse Oxidativo/genética , Proteômica/métodos , Espécies Reativas de Oxigênio , Transdução de Sinais/genéticaRESUMO
Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.
Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodosRESUMO
The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/químicaRESUMO
Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.
Assuntos
Cisteína/química , Metabolismo Energético , Canais Iônicos/química , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termogênese , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Respiração Celular , Cisteína/genética , Cisteína/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Compostos de Sulfidrila/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1RESUMO
Exercise provides many health benefits, including improved metabolism, cardiovascular health, and cognition. We have shown previously that FNDC5, a type I transmembrane protein, and its circulating form, irisin, convey some of these benefits in mice. However, recent reports questioned the existence of circulating human irisin both because human FNDC5 has a non-canonical ATA translation start and because of claims that many human irisin antibodies used in commercial ELISA kits lack required specificity. In this paper we have identified and quantitated human irisin in plasma using mass spectrometry with control peptides enriched with heavy stable isotopes as internal standards. This precise state-of-the-art method shows that human irisin is mainly translated from its non-canonical start codon and circulates at â¼ 3.6 ng/ml in sedentary individuals; this level is increased to â¼ 4.3 ng/ml in individuals undergoing aerobic interval training. These data unequivocally demonstrate that human irisin exists, circulates, and is regulated by exercise.