RESUMO
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Assuntos
Biomarcadores Tumorais , Neoplasias Hematológicas , Imunoterapia Adotiva , Medicina de Precisão , Humanos , Imunoterapia Adotiva/métodos , Neoplasias Hematológicas/terapia , Medicina de Precisão/métodos , Receptores de Antígenos Quiméricos/imunologiaRESUMO
Sixteen new Ciprofloxacin derivatives were designed and successfully synthesized. In an in silico experiment, lipophilicity was established for obtained compounds. All compounds were screened for antimicrobial activity using standard and clinical strains. As for Gram-positive hospital microorganisms, all tested derivatives were active. Measured MICs were in the range 1-16 µg/mL, confirming high antimicrobial potency. Derivative 12 demonstrated activity against all standard Gram-positive Staphylococci, within the range of 0.8-1.6 µg/mL and was confirmed as the leading structure with MICs 1 µg/mL for S. pasteuri KR 4358 and S. aureus T 5591 (clinical strains). All compounds were screened for their in vitro cytotoxic properties via the MTT method. Three of the examined compounds (3, 11 and 16) showed good activity against cancer cells, and in parallel were found not to be cytotoxic toward normal cells. Doxorubicin SI ranged 0.14-1.11 while the mentioned three ranged 1.9-3.4. Selected Ciprofloxacin derivatives were docked into the crystal structure of topoisomerase II (DNA gyrase) in complex with DNA (PDB ID: 5BTC). In summary, leading structures were established (3, 11, 12 and 16). We have observed poor results in preformed studies for disubstituted derivatives, suggesting that 3-oxo-4-carboxylic acid core is the active DNA-gyrase binding site, and when structural changes were made in this fragment, there was an observed decrease in antibacterial potency.
Assuntos
Anti-Infecciosos , Antineoplásicos/química , Ciprofloxacina , Antibacterianos/química , Anti-Infecciosos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , DNA Girase/metabolismo , Mentol/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Timol/farmacologiaRESUMO
Twelve novel derivatives of N-(furan-2-ylmethyl)-1H-tetrazol-5-amine were synthesized. For obtained compound 8, its corresponding substrate single crystals were isolated and X-ray diffraction experiments were completed. In the initial stage of research, in silico structure-based pharmacological prediction was conducted. All compounds were screened for their antibacterial and antimycobacterial activities using standard and clinical strains. The cytotoxic activity was evaluated against a panel of human cancer cell lines, in contrast to normal (HaCaT) cell lines, by using the MTT method. All examined derivatives were found to be noncytotoxic against normal cell lines. Within the studied group, compound 6 showed the most promising results in antimicrobial studies. It inhibited four hospital S. epidermidis rods' growth, when applied at the amount of 4 µg/mL. However, the most susceptible to the presence of compound 6 was S. epidermidis T 5501 851/19 clinical strain, for which the MIC value was only 2 µg/mL. Finally, a pharmacophore model was established based on lead compounds from this and our previous work.
Assuntos
Antibacterianos , Staphylococcus epidermidis/crescimento & desenvolvimento , Tetrazóis/química , Tioureia/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologiaRESUMO
Seven novel derivatives of bis(2-aminoethyl)amine were synthesized. For compounds 1 and 7 single crystals were isolated and X-ray diffraction experiments were done. Lipophilicity and drug likeness were calculated in the initial stage of research. All compounds were screened for their in vitro cytotoxic activity against a panel of human cancer cell lines, which is contrary to normal (HaCaT) cell lines, by using the MTT method. Studies were followed by lactate dehydrogenase assay, apoptotic activity, and interleukin-6 assay. Within the studied group, compound 6 showed the most promising results in all biological studies. The strongest influence in A549 cells was denoted for derivative 4, which inhibited interleukin release almost tenfold, as compared to the control.
Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Citotoxinas , Neoplasias/tratamento farmacológico , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interleucina-6/metabolismo , L-Lactato Desidrogenase/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologiaRESUMO
A series of halogenated (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers (1a-9a, 1b-9b) were synthesized from their corresponding thiourea analogues (1-9). The synthesis pathway was confirmed by an X-ray crystallographic studies of 1a, 1b and 5a. Title derivatives were tested for their in vitro antitubercular activity against standard, "wild-type" and atypical mycobacteria. The highest therapeutic potential was attributed to isomeric N-(bromophenyl)tetrazoles 8a and 9a. Their growth-inhibitory effect against multidrug-resistant Mycobacterium tuberculosis Spec. 210 was 8-16-fold stronger than that of the first-line tuberculostatics. Other new tetrazole-derived compounds were also more or equally effective towards that pathogen comparing to the established pharmaceuticals. Among non-tuberculous strains, Mycobacterium scrofulaceum was the most susceptible to the presence of the majority of tetrazole derivatives. The synergistic interaction was found between 9a and streptomycin, as well as the additivity of both 8a and 9a in pairs with isoniazid, rifampicin and ethambutol. None of the studied compounds displayed antibacterial or cytotoxic properties against normal and cancer cell lines, which indicated their highly selective antimycobacterial effects.
Assuntos
Aminas/farmacologia , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Tetrazóis/farmacologia , Aminas/síntese química , Aminas/química , Antituberculosos/síntese química , Antituberculosos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/químicaRESUMO
On the basis of recently reported biologically active 3-(trifluoromethyl)phenylthioureas, a series of diaryl derivatives incorporating 1H-tetrazol-5-yl (1a-11a, 1a'-11a') and 1,3-thiazolidin-4-one (1b-11b) scaffolds were synthesized. The synthesis pathway was confirmed by an X-ray crystallographic studies of 3a', 6a, 8a, 6b and 8b. The cytotoxicity against MT-4 cells and anti-HIV properties of new derivatives were evaluated. As compared to initial thiourea connections, the cyclisation reduced the cytotoxicity of compounds by 2-15 times. The most promising N-(4-nitrophenyl)-1H-tetrazol-5-amine 7a was found to be more active than the origin thiourea. Its cytotoxicity was evaluated on A549, HTB-140 and HaCaT cell lines using MTT assay. The compound shows significant influence on cancer, but not on normal cells. Obtained results can provide some constructive data for further designing of novel family of potentially bioactive analogs.
Assuntos
Aminas/farmacologia , Fármacos Anti-HIV/farmacologia , Antineoplásicos/farmacologia , Tiazolidinas/farmacologia , Aminas/síntese química , Aminas/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Células Cultivadas , Cristalografia por Raios X , Infecções por HIV/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade , Tetrazóis/química , Tiazolidinas/síntese química , Tiazolidinas/químicaRESUMO
A series of new thiourea derivatives of 1,2,4-triazole have been synthesized. The difference in structures of obtained compounds are directly connected with the kind of isothiocyanate (aryl/alkyl). The (1)H NMR, (13)C NMR, MS methods were used to confirm structures of obtained thiourea derivatives. The molecular structure of (1, 17) was determined by an X-ray analysis. Two of the new compounds (8 and 14) were tested for their pharmacological activity on animal central nervous system (CNS) in behavioural animal tests. The results presented in this work indicate the possible involvement of the serotonergic system in the activity of 8 and 14. In the case of 14 is also a possible link between its activity and the endogenous opioid system. All obtained compounds were tested for antibacterial activity against gram-positive cocci, gram-negative rods and antifungal activity. Compounds (1, 2, 5, 7, 9) showed significant inhibition against gram-positive cocci. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Selected compounds (1-13) were examined for cytotoxicity, antitumor, and anti-HIV activity.