Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 410: 110227, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038716

RESUMO

BACKGROUND: Accurately diagnosing brain tumors from MRI scans is crucial for effective treatment planning. While traditional methods heavily rely on radiologist expertise, the integration of AI, particularly Convolutional Neural Networks (CNNs), has shown promise in improving accuracy. However, the lack of transparency in AI decision-making processes presents a challenge for clinical adoption. METHODS: Recent advancements in deep learning, particularly the utilization of CNNs, have facilitated the development of models for medical image analysis. In this study, we employed the EfficientNetB0 architecture and integrated explainable AI techniques to enhance both accuracy and interpretability. Grad-CAM visualization was utilized to highlight significant areas in MRI scans influencing classification decisions. RESULTS: Our model achieved a classification accuracy of 98.72 % across four categories of brain tumors (Glioma, Meningioma, No Tumor, Pituitary), with precision and recall exceeding 97 % for all categories. The incorporation of explainable AI techniques was validated through visual inspection of Grad-CAM heatmaps, which aligned well with established diagnostic markers in MRI scans. CONCLUSION: The AI-enhanced EfficientNetB0 framework with explainable AI techniques significantly improves brain tumor classification accuracy to 98.72 %, offering clear visual insights into the decision-making process. This method enhances diagnostic reliability and trust, demonstrating substantial potential for clinical adoption in medical diagnostics.

3.
BMC Med Imaging ; 24(1): 107, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734629

RESUMO

This study addresses the critical challenge of detecting brain tumors using MRI images, a pivotal task in medical diagnostics that demands high accuracy and interpretability. While deep learning has shown remarkable success in medical image analysis, there remains a substantial need for models that are not only accurate but also interpretable to healthcare professionals. The existing methodologies, predominantly deep learning-based, often act as black boxes, providing little insight into their decision-making process. This research introduces an integrated approach using ResNet50, a deep learning model, combined with Gradient-weighted Class Activation Mapping (Grad-CAM) to offer a transparent and explainable framework for brain tumor detection. We employed a dataset of MRI images, enhanced through data augmentation, to train and validate our model. The results demonstrate a significant improvement in model performance, with a testing accuracy of 98.52% and precision-recall metrics exceeding 98%, showcasing the model's effectiveness in distinguishing tumor presence. The application of Grad-CAM provides insightful visual explanations, illustrating the model's focus areas in making predictions. This fusion of high accuracy and explainability holds profound implications for medical diagnostics, offering a pathway towards more reliable and interpretable brain tumor detection tools.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos
4.
BMC Med Imaging ; 24(1): 110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750436

RESUMO

Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, supplemented by conventional machine learning techniques. These approaches often lack the robustness and scalability needed for precise and automated tumor classification. The major limitations include a high degree of manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer learning in the medical imaging domain. Federated learning enables decentralized model training across multiple clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of transfer learning further bolsters the model's performance, making it adept at handling the intricate variations in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, outperforming existing methods. The overall accuracy stands at 98%, showcasing the model's efficacy in classifying various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer learning in enhancing brain tumor classification using MRI images.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA