Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299684

RESUMO

Yttrium-doped barium cerate (BCY15) was used as ceramic matrix to obtain Ni/BCY15 anode cermet for application in proton-conducting solid oxide fuel cells (pSOFC). Ni/BCY15 cermets were prepared in two different types of medium, namely deionized water (W) and anhydrous ethylene glycol (EG) using wet chemical synthesis by hydrazine. An in-depth analysis of anodic nickel catalyst was made aiming to elucidate the effect of anode tablets' preparation by high temperature treatment on the resistance of metallic Ni in Ni/BCY15-W and Ni/BCY15-EG anode catalysts. On purpose reoxidation upon high-temperature treatment (1100 °C for 1 h) in air ambience was accomplished. Detailed characterization of reoxidized Ni/BCY15-W-1100 and Ni/BCY15-EG-1100 anode catalysts by means of surface and bulk analysis was performed. XPS, HRTEM, TPR, and impedance spectroscopy measurements experimentally confirmed the presence of residual metallic Ni in the anode catalyst prepared in ethylene glycol medium. These findings were evidence of strong metal Ni network resistance to oxidation in anodic Ni/BCY15-EG. Enhanced resistance of the metal Ni phase contributed to a new microstructure of the Ni/BCY15-EG-1100 anode cermet getting more stable to changes that cause degradation during operation.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540532

RESUMO

Supported gold on co-precipitated nanosized NiAl layered double hydroxides (LDHs) was studied as an effective catalyst for medium-temperature water-gas shift (WGS) reaction, an industrial catalytic process traditionally applied for the reduction in the amount of CO in the synthesis gas and production of pure hydrogen. The motivation of the present study was to improve the performance of the Au/NiAl catalyst via modification by CeO2. An innovative approach for the direct deposition of ceria (1, 3 or 5 wt.%) on NiAl-LDH, based on the precipitation of Ce3+ ions with 1M NaOH, was developed. The proposed method allows us to obtain the CeO2 phase and to preserve the NiAl layered structure by avoiding the calcination treatment. The synthesis of Au-containing samples was performed through the deposition-precipitation method. The as-prepared and WGS-tested samples were characterized by X-ray powder diffraction, N2-physisorption and X-ray photoelectron spectroscopy in order to clarify the effects of Au and CeO2 loading on the structure, phase composition, textural and electronic properties and activity of the catalysts. The reduction behavior of the studied samples was evaluated by temperature-programmed reduction. The WGS performance of Au/NiAl catalysts was significantly affected by the addition of CeO2. A favorable role of ceria was revealed by comparison of CO conversion degree at 220 °C reached by 3 wt.% CeO2-modified and ceria-free Au/NiAl samples (98.8 and 83.4%, respectively). It can be stated that tuning the properties of Au/NiAl LDH via CeO2 addition offers catalysts with possibilities for practical application owing to innovative synthesis and improved WGS performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA