Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
AJR Am J Roentgenol ; 221(6): 806-816, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377358

RESUMO

BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.


Assuntos
Neoplasias Encefálicas , Humanos , Recém-Nascido , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Fala/fisiologia , Estudos Retrospectivos , Vigília , Imageamento por Ressonância Magnética , Idioma , Mapeamento Encefálico/métodos
2.
Cancer Res ; 78(14): 3755-3760, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29769199

RESUMO

Hyperpolarized (HP) MRI using [1-13C] pyruvate is a novel method that can characterize energy metabolism in the human brain and brain tumors. Here, we present the first dynamically acquired human brain HP 13C metabolic spectra and spatial metabolite maps in cases of both untreated and recurrent tumors. In vivo production of HP lactate from HP pyruvate by tumors was indicative of altered cancer metabolism, whereas production of HP lactate in the entire brain was likely due to baseline metabolism. We correlated our results with standard clinical brain MRI, MRI DCE perfusion, and in one case FDG PET/CT. Our results suggest that HP 13C pyruvate-to-lactate conversion may be a viable metabolic biomarker for assessing tumor response.Significance: Hyperpolarized pyruvate MRI enables metabolic imaging in the brain and can be a quantitative biomarker for active tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3755/F1.large.jpg Cancer Res; 78(14); 3755-60. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Isótopos de Carbono/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA