Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Microb Pathog ; 191: 106648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641070

RESUMO

This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells. This effect was dose-dependent and non-cytotoxic, highlighting the hydrolysate potential in treating inflammation-related conditions. Regarding anti-bacterial activity, pepsin-hydrolyzed jellyfish selectively exhibited a potent effect against S. aureus, including Methicillin-susceptible and Methicillin-resistant strains. This activity was evident at minimum inhibitory concentrations (MIC) of 25 µg/mL for S. aureus ATCC10832, while a modest effect was observed against other Gram-positive strains. The hydrolysates effectively delayed bacterial growth dose-dependently, suggesting their use as alternative agents against bacterial infections. Most notably, pepsin-hydrolyzed jellyfish showed significant anti-biofilm activity against S. aureus. The umbrella section hydrolysate of Rhopilema hispidum was particularly effective, reducing biofilm formation through downregulating the icaA gene, crucial for biofilm development. Furthermore, the hydrolysates modulated the expression of the agrA gene, a key regulator in the pathogenesis of S. aureus. In conclusion, pepsin-hydrolyzed jellyfish protein hydrolysates exhibit promising multifunctional bioactivities, including anti-diabetic, anti-inflammatory, antibacterial, and anti-biofilm properties. These findings suggest their potential application in pharmaceutical and nutraceutical fields, particularly in managing diabetic risks, inflammation, bacterial infections, and combating the biofilm-associated pathogenicity of S. aureus.


Assuntos
Antibacterianos , Anti-Inflamatórios , Biofilmes , Testes de Sensibilidade Microbiana , Hidrolisados de Proteína , Cifozoários , Staphylococcus aureus , Animais , Camundongos , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cifozoários/microbiologia , Antibacterianos/farmacologia , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Diabetes Mellitus , Pepsina A/metabolismo , Lipopolissacarídeos
2.
Mol Biotechnol ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773314

RESUMO

The present investigation aimed to determine the effectiveness of bioactive components extracted from Hom herbs (Strobilanthes cusia (Nees) Kuntze) using the solvent-free microwave-assisted extraction (MAE) method. The obtained bioactive components were analyzed for total phenolic content (TPC) and active ingredient content. The Hom extracts were examined for antioxidant, antibacterial, anti-inflammatory, cytotoxic, and anticancer activities. The comparative analysis of extraction methods MAE was studied by using different solvents such as ethanol (EtOH), 50% ethanol (50EtOH) and distilled water (DW). The results obtained by the MAE method with DW as solvent show the TPC of 104.41±1.36 mg GAE/g crude and tryptanthrin 0.1138±0.0014 mg/g crude and indigo 0.0622±0.0015 mg/g crude. Comparatively, values ​​detected in the 50% EtOH extract were not significantly different at the 95% confidence level. At the same time, levels of indirubin were detected at levels equivalent to that of ethanol extracts. The DW extract from MAE had an IC50 value against the DPPH scavenging assay of 0.1927±0.0756 mg/ml, comparable to the test results of extracts of ethanol and 50% ethanol. The bioactive extracted using the MAE with water as solvent had minimum inhibitory concentration (MIC) and could suppress infection at 10 mg/disc. It was also observed that the extracts from the conventional extraction technique using ethanol as the solvent continued to be highly effective against Bacillus cereus even after employing the EtOH or 50% EtOH. Hom extract's MIC value representing inhibiting B. cereus was 0.625 mg/disc. Still, EtOH-extracted Hom demonstrated the highest cytotoxicity against 16HBEo- by reducing cell survival rate by less than 50% while the others did not. Interestingly, Hom that had been extracted using 50EtOH and DW with MAE had an anticancer impact on A549 by reducing the survival rate in a dose-dependent manner.

3.
ACS Omega ; 8(30): 27688-27696, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546656

RESUMO

For many decades, feline infectious disease has been among the most common health problems and a leading cause of death in cats. These diseases include toxoplasmosis, feline leukemia virus (FeLV), and particularly feline immunodeficiency virus (FIV) disease. Early diagnosis is essential to increase the chance of successful treatment. Generally, measurement of the IgG level is considered to be indicative of an individual's immune status for a particular pathogen. The antibodies specific to feline IgG are crucial components for the development of a detection kit. In this study, feline IgG-bound scFv was selected using phage display technology. Three rounds of biopanning were conducted against purified feline IgG. Through an indirect enzyme-linked immunosorbent assay (ELISA), two scFv clones demonstrating the best binding ability to feline IgG were chosen for biochemical characterization. In addition, the selected scFv (N14) was expressed and purified in a bacterial system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the size of the purified N14 was 29 kDa. A sandwich ELISA was used to evaluate the binding capacity of the purified scFv to feline IgG. As expected, the purified N14 had the capacity to bind feline IgG. Furthermore, N14 was modified to create a scFv-alkaline phosphatase (scFv-AP) fusion platform. The surface plasmon resonance (SPR) results revealed that N14-AP bound to feline IgG with an affinity binding value of 0.3 ± 0.496 µM. Additionally, the direct ELISA demonstrated the binding capacity of N14-AP to feline IgG in both cell lysate and purified protein. Moreover, N14-AP could be applied to detect feline IgG based on electrosensing with a detection limit of 10.42 nM. Overall, this study successfully selected a feline IgG-bound scFv and developed a scFv-AP platform that could be further engineered and applied in a feline infectious disease detection kit.

4.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677654

RESUMO

Janus kinases (JAKs) are involved in numerous cellular signaling processes related to immune cell functions. JAK2 and JAK3 are associated with the pathogenesis of leukemia and common lymphoid-derived illnesses. JAK2/3 inhibitors could reduce the risk of various diseases by targeting this pathway. Herein, the naphthoquinones were experimentally and theoretically investigated to identify novel JAK2/3 inhibitors. Napabucasin and 2'-methyl napabucasin exhibited potent cell growth inhibition in TF1 (IC50 = 9.57 and 18.10 µM) and HEL (IC50 = 3.31 and 6.65 µM) erythroleukemia cell lines, and they significantly inhibited JAK2/3 kinase activity (in a nanomolar range) better than the known JAK inhibitor, tofacitinib. Flow cytometric analysis revealed that these two compounds induced apoptosis in TF1 cells in a time and dose-dependent manner. From the molecular dynamics study, both compounds formed hydrogen bonds with Y931 and L932 residues and hydrophobically contacted with the conserved hinge region, G loop, and catalytic loop of the JAK2. Our obtained results suggested that napabucasin and its methylated analog were potential candidates for further development of novel anticancer drug targeting JAKs.


Assuntos
Inibidores de Janus Quinases , Naftoquinonas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Janus Quinase 2/metabolismo , Janus Quinases , Naftoquinonas/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-36568260

RESUMO

Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes. Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation. The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.

6.
ACS Omega ; 7(37): 33587-33598, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157733

RESUMO

Janus kinases (JAKs) are involved in a wide variety of cell signaling associated with T-cell and B-cell mediated diseases. The pathogenesis of common lymphoid-derived diseases and leukemia cancer has been implicated in JAK2 and JAK3. Therefore, to decrease the risk of these diseases, targeting this pathway using JAK2/3 inhibitors could serve as a valuable research tool. Herein, we used a combination of the computational and biological approaches to identify the quinoxalinone-based dual inhibitors of JAK2/3. First, an in-house library of 49 quinoxalinones was screened by molecular docking. Then, the inhibitory activities of 17 screened compounds against both JAKs as well as against two human erythroleukemia cell lines, TF1 and HEL were examined. The obtained results revealed that several quinoxalinones could potentially inhibit JAK2/3, and among them, ST4j showed strong inhibition against JAKs with the IC50 values of 13.00 ± 1.31 nM for JAK2 and 14.86 ± 1.29 nM for JAK3, which are better than ruxolitinib and tofacitinib. In addition, ST4j potentially inhibited TF1 cells (IC50 of 15.53 ± 0.82 µM) and HEL cells (IC50 of 17.90 ± 1.36 µM), similar to both tofacitinib ruxolitinib. Mechanistically, ST4j inhibited JAK2 autophosphorylation and induced cell apoptosis in dose- and time-dependent manners. From molecular dynamics simulations, ST4j was mainly stabilized by van der Waals interactions, and its hydroxyl group could form hydrogen bonds in the hinge region at residues S936 and R938 of JAK2. This research highlights the potential of ST4j to be a novel therapeutic agent for the treatment of lymphoid-derived diseases and leukemia cancer.

7.
ACS Omega ; 7(37): 33548-33559, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157769

RESUMO

Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.

8.
ACS Omega ; 7(26): 22797-22803, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811912

RESUMO

Janus kinase (JAK) deregulation of the JAK/signal transducers and activators of transcription pathway leads to myelofibrosis that can be treated by JAK inhibitors including Ruxolitinib and Tofacitinib. Even though both inhibitors are effective against myelofibrosis, each of them has a different mode of action in the cells. Ruxolitinib is an inhibitor for selective JAK1/2, and Tofacitinib is an inhibitor for JAK3. This study evaluated the chemical fingerprints of TF-1 cells after JAK inhibitor treatments by the synchrotron Fourier transform infrared microspectroscopy (S-FTIR) spectrum. Tofacitinib and Ruxolitinib treatments in TF-1 cells were applied with a chemical fingerprint approach in S-FTIR spectroscopy and in vitro cytotoxicity in a cell-based assay. Principal component analysis or PCA was utilized to classify three cell treatments with three biochemical alteration absorbances of lipid vibration by the C-H stretching, protein amide I that appeared from the C=O stretching, and a P=O phosphodiester bond from nucleic acids. The results showed that the inhibition effect of Ruxolitinib on the TF-1 cell lines was two-fold higher than Tofacitinib. PCA distinguishes untreated and drug-treated cells by detecting cellular biochemical alteration. The loading plots identify that proteins and nucleic acids were the different main components in disparate cell treatments. Tofacitinib was distinct from the others in lipid and nucleic acid. The second derivative spectra of the three molecular components had decreased lipid production and accumulation, changes in secondary structures in proteins, and a high level of RNA overexpression in cell treatment. The JAK inhibitors caused different spectroscopic biomarkers of the modifications of secondary protein conformation, stimulated cell lipid accumulation, and phosphorylation from untreated cells. The alteration of cellular biochemical components suggests that FTIR is a potential tool to analyze specific patterns of drug cellular responses at the molecular level.

9.
Proteome Sci ; 20(1): 9, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578244

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) overexpression is found in metastatic colorectal cancer (mCRC). Targeted molecular therapies such as monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI) are becoming more precise, targeting specifically for cancer therapeutics. However, there are adverse effects of currently available anti-EGFR drugs, including drug-resistant and side effects. Nanobodies can overcome these limitations. Our previous study has found that cell-penetrable nanobodies targeted at EGFR-tyrosine kinase were significantly reduced EGFR-positive lung cancer cells viability and proliferation. The aim of the present study was to determine the effect of cell-penetrable nanobody (R9VH36) on cell viability and proteomic profile in EGFR-positive human colorectal cancer cell lines. METHODS: The human colorectal carcinoma cell line (SW480) was treated with R9VH36, compared with gefitinib. Cell viability was monitored using the MTT cell viability assay. The proteomic profiling was analyzed by LC-MS/MS . RESULTS: The half-maximal inhibitory concentration (IC50) values determined for R9VH36 and gefitinib against SW480 were 527 ± 0.03 nM and 13.31 ± 0.02 µM, respectively. Moreover, both the gefitinib-treated group and nanobody-treated group had completely different proteome profiles. A total 6626 differentially expressed proteins were identified. PCA analysis revealed different proteome profiling in R9VH36 experiment. There were 8 proteins in R9VH36 that significantly exhibited opposite expression directions when compared to gefitinib. These proteins are involved in DNA-damage checkpoint processes. CONCLUSION: The proteomics explored those 6,626 proteins had different expressions between R9VH36 and gefitinib. There were 8 proteins in R9VH36 exhibited opposite expression direction when comparing to gefitinib. Our findings suggest that R9VH36 has the potential to be an alternative remedy for treating EGFR-positive colon cancer.

10.
J Cell Biochem ; 123(2): 248-258, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34633106

RESUMO

Aberrations of the epidermal growth factor receptor (EGFR), for example, mutations and overexpression, play pivotal roles in various cellular functions, such as proliferation, migration, and cell differentiation. Approved small molecule-based inhibitors, including gefitinib and erlotinib, are used clinically to target the tyrosine kinase domain of EGFR (TK-EGFR). However, the severity of the side effects, off-target effects, and drug resistance is a concern. Cyclic peptides are a well-known peptide format with high stability and are promising molecules for drug development. Herein, the Ph.D.™-C7C phage display library was used to screen cyclic peptides against TK-EGFR. Biopanning, both with and without propagation methods, was performed to assess the highest capacity peptides using the enzymatic activity of TK-EGFR. Interestingly, NP1, a peptide selected during biopanning without propagation demonstrated an inhibitory effect against TK-EGFR at IC50 within the nanomolar range; this effect was better than that of P1 obtained using biopanning with propagation. Moreover, NP1 elicited EGFR with an affinity binding (KD ) value of 18.40 ± 5.50 µM by surface plasmon resonance (SPR). Introducing cell-penetrating peptides or Arginine-9 (Arg9) at the N-terminus of NP1 thus improves cell-penetrability and can lead to the inhibition of EGFR-driven cancer cell lines; however, it exhibits no hepatotoxicity. Furthermore, NP1 caused a decrease in phosphorylated EGFR after activation within cells. A docking model shows that NP1 interacted primarily with TK-EGFR via hydrogen bonding. Together, this suggests that NP1 is a novel EGFR peptide inhibitor candidate with specificity and selectivity toward TK-EGFR, and may be applied to targeted therapy.


Assuntos
Peptídeos Cíclicos , Inibidores de Proteínas Quinases , Células A549 , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Células Hep G2 , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
Chem Biol Drug Des ; 99(3): 456-469, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923743

RESUMO

Epidermal growth factor receptor tyrosine kinase domain (EGFR-TK) has been one of the prominent targets for therapeutics of several human cancers, in particular non-small cell lung cancer. Although several small chemical compounds targeting EGFR-TK have been approved by FDA for treatment of such a cancer, the discovery of a new class of EGFR-TK inhibitors, for example, small peptides, is still desired. In this study, using molecular docking-based virtual screening, we selected five small peptides with high docking scores from eight thousand peptides as candidate compounds against EGFR-TK. Among five, the tripeptide WFF had the most potency to suppress the survival of non-small cell lung cancer cells but had the least toxicity to human liver cancer cells. Our in vitro kinase assays showed that WFF exhibited much lower inhibitory activity against purified EGFR-TK than the drug erlotinib (i.e., IC50  values of ≈ 0.62 µM vs ≈ 7.57 nM, respectively). The relative free binding energies estimated from molecular dynamic simulations were consistent with the in vitro experiments in which the WFF bound had a lower affinity than erlotinib bound to EGFR-TK (i.e., ΔGbind values of -20.3 kJ/mol vs ≈ -126.8 kJ/mol, respectively). In addition, the simulation analyses demonstrated the difference in EGFR binding preference between the drug and tripeptide in which erlotinib was stably bound in the ATP-binding pocket for 4-anilinoquinazoline class of inhibitors, while WFF moved out of that pocket to interact with polar amino acid residues on the αC-helix, activation loop, and substrate-binding region. Our findings suggest preferable interactions of the potential tripeptide on enzyme inhibition that are useful for further development of a new class of inhibitors targeting EGFR-TK.


Assuntos
Receptores ErbB/metabolismo , Oligopeptídeos/química , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/metabolismo , Cloridrato de Erlotinib/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Domínios Proteicos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Termodinâmica
12.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34908139

RESUMO

Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único , Anticorpos Monoclonais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Visualização da Superfície Celular , Detecção Precoce de Câncer , Feminino , Humanos , Anticorpos de Domínio Único/genética
13.
RSC Med Chem ; 12(3): 430-438, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046625

RESUMO

The Janus kinase (JAK) and epidermal growth factor receptor (EGFR) have been considered as potential targets for cancer therapy due to their role in regulating proliferation and survival of cancer cells. In the present study, the aromatic alkyl-amino analogs of thiazole-based chalcone were selected to experimentally and theoretically investigate their inhibitory activity against JAK2 and EGFR proteins as well as their anti-cancer effects on human cancer cell lines expressing JAK2 (TF1 and HEL) and EGFR (A549 and A431). In vitro cytotoxicity screening results demonstrated that the HEL erythroleukemia cell line was susceptible to compounds 11 and 12, whereas the A431 lung cancer cell line was vulnerable to compound 25. However, TF1 and A549 cells were not sensitive to our thiazole derivatives. From kinase inhibition assay results, compound 25 was found to be a dual inhibitor against JAK2 and EGFR, whereas compounds 11 and 12 selectively inhibited the JAK2 protein. According to the molecular docking analysis, compounds 11, 12 and 25 formed hydrogen bonds with the hinge region residues Lys857, Leu932 and Glu930 and hydrophobically came into contact with Leu983 at the catalytic site of JAK2, while compound 25 formed a hydrogen bond with Met769 at the hinge region, Lys721 near a glycine loop, and Asp831 at the activation loop of EGFR. Altogether, these potent thiazole derivatives, following Lipinski's rule of five, could likely be developed as a promising JAK2/EGFR targeted drug(s) for cancer therapy.

14.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921332

RESUMO

Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.


Assuntos
Simulação por Computador , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Sulfonas/química , Termodinâmica
15.
Asian Pac J Cancer Prev ; 22(2): 381-390, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639651

RESUMO

OBJECTIVE: Cholangiocarcinoma (CCA) is a noxious malignancy of epithelium of the bile duct with a low response rate to chemotherapy. The epidermal growth factor receptor (EGFR) signaling pathway is implicated in the development of cancerous cells, especially CCA. In this study, we report detailed biological profiling of 13f identified from our earlier hit expansion studies. The aim of this work was to expand our understanding of 13f via more detailed investigations of its mechanism of action against KKU-100, KKU-452 and KKU-M156 CCA cells, as well as in comparison to the EGFR inhibitor Gefitinib and non-specific chemotherapeutic agents such as Cisplatin. METHODS: Inhibiting EGFR-Kinase, cytotoxicity, clonogenic assay, wound healing and apoptosis were performed. Levels of total expression of EGFR and EGFR phosphorylation proteins were detected. RESULTS: 13f was confirmed as an inhibitor of EGFR with an IC50 value against the tyrosine kinase of EGFR of 22 nM and IC50 values for 48 h incubation period were 1.3 ± 1.9, 1.5 ± 0.4 and 1.7 ± 1.1 µM of KKU-100, KKU-452 and KKU-M156, respectively through dose- and time-dependent induction of early apoptosis of CCA cells. The compound also suppressed the clonogenic ability of KKU-100 and KKU-M156 cells stronger than Gefitinib, while potently inhibiting EGF-stimulated CCA cell migratory activity in KKU-452 cells. It was observed that under normal conditions EGFR was activated in CCA cells. EGF-stimulated basal expression of EGFR in KKU-452 cells was suppressed following 13f treatment, which was significantly greater than that of the marketed EGFR inhibitor Gefitinib. CONCLUSION: In summary, our study showed that 13f has potent anti-cancer activities including antiproliferation, clonogenic ability and migration through the modulation of EGFR signaling pathway in CCA for the first time. The compound represents an interesting starting point as a potential chemotherapeutic agent in ongoing efforts to improve response rate in CCA patients.
.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Receptores ErbB/antagonistas & inibidores , Sulfonamidas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos
16.
J Pharm Pharmacol ; 72(3): 470-480, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31875979

RESUMO

OBJECTIVES: To examine the effects of chamuangone on human cancer cell proliferation, migration and apoptosis. METHODS: An MTT assay was used to study the effect of chamuangone on human cervical carcinoma cell growth. An in-vitro scratch migration assay was used to investigate the activity of cell motility after chamuangone treatment. Chamuangone-induced cell apoptosis in HeLa cells was determined using the apoptotic assay kit. The inhibitory activities of chamuangone were examined by ADP-Glo™ kinase assay. The GOLD docking algorithm was used to demonstrate the mechanism against tyrosine kinase of EGFR. KEY FINDINGS: Chamuangone showed a strong inhibitory cell proliferation of HeLa cells with IC50 values of 3.59 µm and effectively inhibited HeLa cell migration. In addition, chamuangone exhibited the apoptotic cell death induction in a time and dose-dependent manner. Finally, chamuangone also was tested for EGFR-TK inhibition activity. The IC50 value of chamuangone was 2.85 nm, whereas the IC50 value of gefitinib was 15.10 nm. CONCLUSIONS: The above results confirm the inhibitory effects of chamuangone on HeLa cell proliferation and cell migration. In addition, chamuangone also induces cell apoptosis in HeLa cells. These findings indicate that chamuangone is a compound that is a potential chemotherapeutic agent.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Garcinia , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Folhas de Planta
17.
J Biophotonics ; 13(3): e201960012, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31595681

RESUMO

ATP-analogue inhibitors, Gefitinib (Iressa) and Erlotinib (Tarceva) had been approved for advanced and metastatic nonsmall cell lung cancer (NSCLC) cells against tyrosine kinase domain of epidermal growth factor receptor (EGFR). Many techniques have been developed to better understand the drug mechanism which is multistep, time-consuming and expensive. Herein, we performed Fourier-transform infrared (FTIR) microscopy for evaluating the biochemical change on NSCLC (A549) cells after treatment. At levels that produced equivalent effects, Gefitinib dramatically induced cell apoptosis via impaired mitochondrial transmembrane potential. Whereas, Erlotinib had a slight effect on A549. Principal component analysis was performed to distinguish the effect of EGFR inhibitors on A549. FTIR spectra regions were divided into three regions: lipids (3000-2800 cm-1 ), proteins (1700-1500 cm-1 ) and carbohydrates and nuclei acids (1200-1000 cm-1 ). Biochemical changes can be evaluated by these spectral regions. This work may be a novel concept for utilizing FTIR spectroscopy for high-throughput discriminative effects of a drug or compound and its derivatives on cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Cell Biochem ; 120(10): 18077-18087, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172597

RESUMO

Most patients suffering from non-small cell lung cancer (NSCLC) have epidermal growth factor receptor (EGFR) overexpression. Currently, EGFR tyrosine kinase inhibitors (TKIs) that act as the ATP-analogs and monoclonal antibodies (MAbs) to EGFR-ectodomain that block intracellular signaling are used for the treatment of advanced NSCLC. Unfortunately, adverse effects due to the TKI off-target and drug resistance occur in a significant number of the treated patients while some NSCLC genotypes do not respond to the therapeutic MAbs. Thus, a more effective remedy for the treatment of EGFR-overexpressed cancers is deemed necessary. In this study, VH/VH H displayed-phage clones that are bound to recombinant EGFR-TK were fished-out from a humanized-camel VH/VH H phage display library. VH/VH H of three phage-infected Escherichia coli clones (VH18, VH H35, and VH36) were linked molecularly to nonaarginine (R9) for making them cell penetrable. R9-VH18, R9-VH H35, and R9-VH36 were cytotoxic to human adenocarcinomic alveolar basal epithelial cells (A549) at the fifty percent inhibitory concentration (IC50 ) 0.181 ± 0.132, 0.00961 ± 0.00516, and 0.00996 ± 0.00752 µM, respectively, which were approximately 1000-fold more effective than small molecular TKIs. R9-VH18 and R9-VH36 also delayed cancer cell migration in a scratch-wound assay. Computerized homology modeling and intermolecular docking revealed that VH18 and VH H35 used CDR3 to interact with EGFR-TK residues close to the catalytic site, which might sterically hinder the ATP-binding of the TK; VH36 used CDR2 to bind at the asymmetric dimerization surface, which might disrupt EGFR dimerization leading to inhibition of intracellular signaling. The humanized-cell penetrable nanobodies have a high potential for developing further towards a clinical application.


Assuntos
Adenocarcinoma de Pulmão/patologia , Movimento Celular , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Anticorpos de Domínio Único/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mapeamento de Epitopos , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular
19.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897725

RESUMO

Targeted cancer therapy has become a high potential cancer treatment. Epidermal growth factor receptor (EGFR), which plays an important role in cell signaling, enhanced cell survival and proliferation, has been suggested as molecular target for the development of novel cancer therapeutics. In this study, a series of chalcone derivatives was screened by in vitro cytotoxicity against the wild type (A431 and A549) and mutant EGFR (H1975 and H1650) cancer cell lines, and, subsequently, tested for EGFR-tyrosine kinase (TK) inhibition. From the experimental screening, all chalcones seemed to be more active against the A431 than the A549 cell line, with chalcones 1c, 2a, 3e, 4e, and 4t showing a more than 50% inhibitory activity against the EGFR-TK activity and a high cytotoxicity with IC50 values of < 10 µM against A431 cells. Moreover, these five chalcones showed more potent on H1975 (T790M/L858R mutation) than H1650 (exon 19 deletion E746-A750) cell lines. Only three chalcones (1c, 2a and 3e) had an inhibitory activity against EGFR-TK with a relative inhibition percentage that was close to the approved drug, erlotinib. Molecular dynamics studies on their complexes with EGFR-TK domain in aqueous solution affirmed that they were well-occupied within the ATP binding site and strongly interacted with seven hydrophobic residues, including the important hinge region residue M793. From the above information, as well as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, all three chalcones could serve as lead compounds for the development of EGFR-TK inhibitors.


Assuntos
Chalcona/análogos & derivados , Chalcona/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Mutação/genética
20.
J Cell Biochem ; 120(3): 3353-3361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30324706

RESUMO

The epidermal growth factor receptor (EGFR) was found to be overexpressed in several cancers, especially in lung cancers. Finding new effective drug against EGFR is the key to cancer treatment. In this study, the GOLD docking algorithm was used to virtually screen for novel human EGFR inhibitors from the NCI database. Thirty-four hit compounds were tested for EGFR-tyrosine kinase (TK) inhibition. Two potent compounds, 1-amino-4-(4-[4-amino-2-sulfophenyl]anilino)-9,10-dioxoanthracene-2-sulfonic acid (NSC125910), and nogalamycin N-oxide (NSC116555) were identified with IC50 values against EGFR-TK comparable to gefitinib; 16.14 and 37.71 nM, respectively. However, only NSC116555 demonstrated cytotoxic effects against non-small-cell lung cancer, A549, shown in the cell cytotoxicity assay with an IC50 of 0.19 + 0.01 µM, which was more potent than gefitinib. Furthermore, NSC116555 showed cytotoxicity against A549 via apoptosis in a dose-dependent manner.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desenho de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Nogalamicina/farmacologia , Antibióticos Antineoplásicos/química , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Simulação por Computador , Receptores ErbB/metabolismo , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Nogalamicina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA