Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(5): e0012156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709850

RESUMO

The multifactorial basis of therapeutic response can obscure the relation between antimicrobial drug susceptibility and clinical outcome. To discern the relationship between parasite susceptibility to meglumine antimoniate (SbV) and therapeutic outcome of cutaneous leishmaniasis, risk factors for treatment failure were considered in evaluating this relationship in ninety-one cutaneous leishmaniasis patients and corresponding clinical strains of Leishmania (Viannia) panamensis. Parasite susceptibility to 32 µg SbV/mL (plasma Cmax) was evaluated in primary human macrophages, PBMCs, and U937 macrophages. Early parasitological response to treatment was determined in lesions of a subgroup of patients, and pathogenicity of Sb-resistant and sensitive clinical strains was compared in BALB/c mice. Parasite survival in cell models and patient lesions was determined by qRT-PCR of Leishmania 7SLRNA transcript. Parasite loads in BALB/c mice were quantified by limiting dilution analysis. The disparate Sb-susceptibility of parasite subpopulations distinguished by isoenzyme profiles (zymodemes) was manifest in all cell models. Notably, Sb-resistance defined by parasite survival, was most effectively discerned in U937 macrophages compared with primary human host cells, significantly higher among strains from patients who failed treatment than cured and, significantly associated with treatment failure. Each unit increase in transformed survival rate corresponded to a 10.6-fold rise in the odds of treatment failure. Furthermore, treatment failure was significantly associated with naturally Sb-resistant zymodeme 2.3 strains, which also produced larger lesions and parasite burdens in BALB/c mice than Sb-sensitive zymodeme 2.2 strains. The confounding effect of host risk factors for treatment failure in discerning this association was evidenced in comparing strains from patients with and without the defined risk factors for treatment failure. These results establish the association of natural resistance to meglumine antimoniate with treatment failure, the importance of host risk factors in evaluating drug susceptibility and treatment outcome, and the clinical and epidemiological relevance of natural Sb-resistance in L. (V.) panamensis subpopulations.


Assuntos
Antiprotozoários , Resistência a Medicamentos , Leishmaniose Cutânea , Macrófagos , Antimoniato de Meglumina , Meglumina , Camundongos Endogâmicos BALB C , Compostos Organometálicos , Falha de Tratamento , Animais , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Antimoniato de Meglumina/uso terapêutico , Antimoniato de Meglumina/farmacologia , Humanos , Antiprotozoários/uso terapêutico , Antiprotozoários/farmacologia , Feminino , Meglumina/uso terapêutico , Meglumina/farmacologia , Compostos Organometálicos/uso terapêutico , Compostos Organometálicos/farmacologia , Camundongos , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Leishmania guyanensis/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Carga Parasitária , Adolescente
2.
J Invest Dermatol ; 144(4): 862-873.e4, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37852357

RESUMO

Cutaneous leishmaniasis affects 1 million people worldwide annually. Although conventional treatments primarily target the parasite, there is growing interest in host immune modulation. In this study, we investigated the impact of synthetic ß-carboline harmine (ACB1801), previously shown to be immunoregulatory in cancer, on the pathology caused by a drug-resistant Leishmania major strain causing persistent cutaneous lesions. Exposure to ACB1801 in vitro had a modest impact on parasite burden within host macrophages. Moreover, it significantly increased major histocompatibility complex II and costimulatory molecule expression on infected dendritic cells, suggesting an enhanced immune response. In vivo, ACB1801 monotherapy led to a substantial reduction in lesion development and parasite burden in infected C57BL/6 mice, comparable with efficacy of amphotericin B. Transcriptomics analysis further supported ACB1801 immunomodulatory effects, revealing an enrichment of TNF-α, IFN-γ, and major histocompatibility complex II antigen presentation signatures in the draining lymph nodes of treated mice. Flow cytometry analysis confirmed an increased frequency (1.5×) of protective CD4+IFN-γ+TNF-α+ T cells and a decreased frequency (2×) in suppressive IL-10+FoxP3- T cells at the site of infection and in draining lymph nodes. In addition, ACB1801 downregulated the aryl hydrocarbon receptor signaling, known to enhance immunosuppressive cytokines. Thus, these results suggest a potential use for ACB1801 alone or in combination therapy for cutaneous leishmaniasis.


Assuntos
Leishmania major , Leishmaniose Cutânea , Leishmaniose , Humanos , Animais , Camundongos , Harmina/farmacologia , Harmina/uso terapêutico , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Imunidade , Camundongos Endogâmicos BALB C
3.
PLoS Pathog ; 18(1): e1010247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041723

RESUMO

Neutrophils are the first line of defence against invading pathogens. Although neutrophils are well-known professional killers, some pathogens including Leishmania (L.) parasites survive in neutrophils, using these cells to establish infection. Manipulation of neutrophil recruitment to the infection site is therefore of interest in this cutaneous disease. The c-MET tyrosine kinase receptor was shown to promote neutrophil migration to inflamed sites. Here, we investigated the importance of c-MET expression on neutrophils in their recruitment to the infection site and the role of c-Met expression in the pathology of leishmaniasis. Following infection with L. mexicana, mice with conditional deletion of c-MET in neutrophils controlled significantly better their lesion development and parasite burden compared to similarly infected wild type mice. Our data reveal a specific role for c-MET activation in Leishmania-induced neutrophil infiltration, a process correlating with their negative role in the pathology of the diseases. We further show that c-MET phosphorylation is observed in established cutaneous lesions. Exposure to L. mexicana upregulated c-Met expression predominantly in infected neutrophils and c-Met expression influenced ROS release by neutrophils. In addition, pharmacological inhibition of c-MET, administrated once the lesion is established, induced a significant decrease in lesion size associated with diminished infiltration of neutrophils. Both genetic ablation of c-MET in neutrophils and systemic inhibition of c-MET locally resulted in higher levels of CD4+T cells producing IFNγ, suggesting a crosstalk between neutrophils and these cells. Collectively, our data show that c-MET activation in neutrophils contributes to their recruitment following infection, and that L. mexicana induction of c-MET on neutrophils impacts the local pathology associated with this disease. Our results suggest a potential use for this inhibitor in the control of the cutaneous lesion during this parasitic infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Leishmaniose Cutânea/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260403

RESUMO

Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1ß release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1ß neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.


Assuntos
Imunidade Inata , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Yersinia pseudotuberculosis/fisiologia , Células 3T3 , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia
5.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276966

RESUMO

Tissue-resident macrophages (TRMs) maintain tissue homeostasis, but they can also provide a replicative niche for intracellular pathogens such as Leishmania How dermal TRMs proliferate and maintain their M2 properties even in the strong TH1 environment of the L. major infected dermis is not clear. Here, we show that, in infected mice lacking IL-4/13 from eosinophils, dermal TRMs shifted to a proinflammatory state, their numbers declined, and disease was attenuated. Intravital microscopy revealed a rapid infiltration of eosinophils followed by their tight interaction with dermal TRMs. IL-4-stimulated dermal TRMs, in concert with IL-10, produced a large amount of CCL24, which functioned to amplify eosinophil influx and their interaction with dermal TRMs. An intraperitoneal helminth infection model also demonstrated a requirement for eosinophil-derived IL-4 to maintain tissue macrophages through a CCL24-mediated amplification loop. CCL24 secretion was confined to resident macrophages in other tissues, implicating eosinophil-TRM cooperative interactions in diverse inflammatory settings.


Assuntos
Quimiocina CCL24/imunologia , Eosinófilos/imunologia , Interleucina-4/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Pele/imunologia , Animais , Interleucina-4/deficiência , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/citologia
6.
J Invest Dermatol ; 139(6): 1318-1328, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30594488

RESUMO

Neutrophils are rapidly recruited to the mammalian skin in response to infection with the cutaneous Leishmania pathogen. The parasites use neutrophils to establish the disease; however, the signals driving early neutrophil recruitment are poorly known. Here, we identified the functional importance of TLR2 signaling in this process. Using bone marrow chimeras and immunohistology, we identified the TLR2-expressing cells involved in this early neutrophil recruitment to be of nonhematopoietic origin. Keratinocytes are damaged and briefly in contact with the parasites during infection. We show that TLR2 triggering by Leishmania major is required for their secretion of neutrophil-attracting chemokines. Furthermore, TLR2 triggering by L. major phosphoglycans is critical for neutrophil recruitment to negatively affect disease development, as shown by better control of lesion size and parasite load in Tlr2-/- compared with wild-type infected mice. Conversely, restoring early neutrophil presence in Tlr2-/- mice through injection of wild-type neutrophils or CXCL1 at the onset of infection resulted in delayed disease resolution comparable to that observed in wild-type mice. Taken together, our data show a crucial role for TLR2-expressing nonhematopoietic skin cells in the recruitment of the first wave of neutrophils after L. major infection, a process that delays disease control.


Assuntos
Queratinócitos/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Transplante de Medula Óssea , Comunicação Celular/imunologia , Quimiocina CXCL1/imunologia , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Humanos , Queratinócitos/imunologia , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Carga Parasitária , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/citologia , Pele/imunologia , Pele/parasitologia , Pele/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Quimeras de Transplante
7.
Sci Rep ; 8(1): 11203, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046157

RESUMO

In this study, Trypanosoma brucei was naturally transmitted to mice through the bites of infected Glossina morsitans tsetse flies. Neutrophils were recruited rapidly to the bite site, whereas monocytes were attracted more gradually. Expression of inflammatory cytokines (il1b, il6), il10 and neutrophil chemokines (cxcl1, cxcl5) was transiently up-regulated at the site of parasite inoculation. Then, a second influx of neutrophils occurred that coincided with the previously described parasite retention and expansion in the ear dermis. Congenital and experimental neutropenia models, combined with bioluminescent imaging, indicate that neutrophils do not significantly contribute to dermal parasite control and elicit higher systemic parasitemia levels during the infection onset. Engulfment of parasites by neutrophils in the skin was rarely observed and was restricted to parasites with reduced motility/viability, whereas live parasites escaped phagocytosis. To our knowledge, this study represents the first description of a trypanosome infection promoting role of early innate immunological reactions following an infective tsetse fly bite. Our data indicate that the trypanosome is not hindered in its early development and benefits from the host innate responses with the neutrophils being important regulators of the early infection, as already demonstrated for the sand fly transmitted Leishmania parasite.


Assuntos
Derme/parasitologia , Neutrófilos/parasitologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL5/genética , Derme/metabolismo , Regulação da Expressão Gênica , Mordeduras e Picadas de Insetos/parasitologia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-6/genética , Medições Luminescentes , Camundongos , Neutrófilos/metabolismo , Neutrófilos/patologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Moscas Tsé-Tsé/patogenicidade
8.
J Immunol ; 197(3): 771-82, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324132

RESUMO

Although Notch signaling plays important roles in lineage commitment and differentiation of multiple cell types including conventional T cells, nothing is currently known concerning Notch function in innate-like T cells. We have found that the homeostasis of several well-characterized populations of innate-like T cells including invariant NKT cells (iNKT), CD8ααTCRαß small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells is controlled by Notch. Notch selectively regulates hepatic iNKT cell survival via tissue-restricted control of B cell lymphoma 2 and IL-7Rα expression. More generally, Notch regulation of innate-like T cell homeostasis involves both cell-intrinsic and -extrinsic mechanisms and relies upon context-dependent interactions with Notch ligand-expressing fibroblastic stromal cells. Collectively, using conditional ablation of Notch receptors on peripheral T cells or Notch ligands on putative fibroblastic stromal cells, we show that Notch signaling is indispensable for the homeostasis of three tissue-restricted populations of innate-like T cells: hepatic iNKT, CD8ααTCRαß small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells, thus supporting a generalized role for Notch in innate T cell homeostasis.


Assuntos
Diferenciação Celular/imunologia , Homeostase/imunologia , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Receptores Notch/metabolismo
9.
Immunobiology ; 221(2): 341-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26514298

RESUMO

NOD-like receptors (NLR) are a family of cytosolic pattern recognition receptors that include many key drivers of innate immune responses. NLRP12 is an emerging member of the NLR family that is closely related to the well-known inflammasome scaffold, NLRP3. Since its discovery, various functions have been proposed for NLRP12, including the positive regulation of dendritic cell (DC) and neutrophil migration and the inhibition of NF-κB and ERK signalling in DC and macrophages. We show here that NLRP12 is poorly expressed in murine macrophages and DC, but is strongly expressed in neutrophils. Using myeloid cells from WT and Nlrp12(-/)(-) mice, we show that, contrary to previous reports, NLRP12 does not suppress LPS- or infection-induced NF-κB or ERK activation in myeloid cells, and is not required for DC migration in vitro. Surprisingly, we found that Nlrp12 deficiency caused increased rather than decreased neutrophil migration towards the chemokine CXCL1 and the neutrophil parasite Leishmania major, revealing NLRP12 as a negative regulator of directed neutrophil migration under these conditions.


Assuntos
Movimento Celular/imunologia , Quimiocina CXCL1/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neutrófilos/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL1/genética , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Feminino , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leishmania major/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/parasitologia , Especificidade de Órgãos , Transdução de Sinais
10.
Eur J Immunol ; 46(4): 897-911, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689285

RESUMO

Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1ß mRNA and IL-1ß-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1ß or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1ß might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1ß by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1ß, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.


Assuntos
Proteínas de Transporte/genética , Interleucina-1beta/genética , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Animais , Caspase 1/genética , Caspases/genética , Caspases Iniciadoras , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/biossíntese , Receptores de Citocinas/genética , Receptores de Interleucina , Receptores Tipo I de Interleucina-1/genética , Células Th1/imunologia
11.
PLoS Negl Trop Dis ; 9(3): e0003601, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25756874

RESUMO

BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.


Assuntos
Apoptose , Leishmania braziliensis , Leishmania/imunologia , Ativação de Neutrófilo , Animais , Antígenos CD18/análise , Feminino , Selectina L/análise , Leishmania braziliensis/imunologia , Elastase de Leucócito/biossíntese , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
12.
J Exp Med ; 211(11): 2265-79, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25311507

RESUMO

Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.


Assuntos
Microambiente Celular/imunologia , Fibroblastos/metabolismo , Imunidade , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Quimiocina CCL19/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Baço/imunologia , Baço/metabolismo , Células Estromais/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
13.
PLoS Pathog ; 10(1): e1003900, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453980

RESUMO

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.


Assuntos
Colite/imunologia , Vírus da Influenza A/imunologia , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Glicoproteínas de Membrana/deficiência , Infecções por Orthomyxoviridae/imunologia , Receptores Imunológicos/deficiência , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite/terapia , Modelos Animais de Doenças , Doença dos Legionários/genética , Doença dos Legionários/patologia , Doença dos Legionários/terapia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/terapia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/terapia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides
14.
Proc Natl Acad Sci U S A ; 111(1): E109-18, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367096

RESUMO

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.


Assuntos
Fibroblastos/citologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos/citologia , Imunidade Adaptativa , Animais , Movimento Celular , Proliferação de Células , Células Dendríticas/citologia , Fibroblastos/metabolismo , Homeostase , Inflamação , Ativação Linfocitária , Linfotoxina-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Fator 88 de Diferenciação Mieloide/metabolismo , Células Estromais/citologia , Linfócitos T/citologia
15.
Infect Immun ; 81(5): 1575-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23439309

RESUMO

Infection with Leishmania braziliensis causes cutaneous or mucocutaneous leishmaniasis in humans. Toll-like receptor 9 (TLR9) expression has been found in granulomas of lesions in L. braziliensis-infected individuals. L. braziliensis inoculation in mice induces very small lesions that are self-healing, whereas deficiency in the TLR adaptor molecule, MyD88, renders mice susceptible to infection. The TLR involved has not been identified, prompting us to investigate if TLR9 triggering by the parasite contributes to the strong resistance to infection observed in L. braziliensis-inoculated mice. The parasites activated wild-type (WT) dendritic cells (DCs) in vitro but not DCs derived from TLR9(-/-) mice. TLR9(-/-) mice inoculated with L. braziliensis exhibited a transient susceptibility characterized by increased lesion size and parasite burden compared to those of WT mice. Surprisingly, elevated levels of gamma interferon (IFN-γ) were measured at the site of infection and in draining lymph node T cells of TLR9(-/-) mice at the peak of susceptibility, suggesting that unlike observations in vitro, the parasite could induce DC activation leading to the development of Th1 cells in the absence of TLR9 expression. Taken together, these data show that TLR9 signaling is important for the early control of lesion development and parasite burden but is dispensable for the differentiation of Th1 cells secreting IFN-γ, and the high levels of this cytokine are not sufficient to control early parasite replication following L. braziliensis infection.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea/metabolismo , Receptor Toll-Like 9/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Leishmaniose Cutânea/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Receptor Toll-Like 9/deficiência
16.
J Immunol ; 189(12): 5764-72, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23162125

RESUMO

Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.


Assuntos
Adjuvantes Imunológicos/fisiologia , Envelhecimento/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Adjuvantes Imunológicos/administração & dosagem , Transferência Adotiva , Animais , Animais Recém-Nascidos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Comunicação Celular/genética , Diferenciação Celular/genética , Senescência Celular/imunologia , Ilhas de CpG/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Auxiliares-Indutores/transplante , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/imunologia
17.
PLoS Negl Trop Dis ; 6(6): e1684, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720104

RESUMO

BACKGROUND: Cutaneous leishmaniasis is a vector-borne disease that is in Ethiopia mainly caused by the parasite Leishmania aethiopica. This neglected tropical disease is common in rural areas and causes serious morbidity. Persistent nonhealing cutaneous leishmaniasis has been associated with poor T cell mediated responses; however, the underlying mechanisms are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We have recently shown in an experimental model of cutaneous leishmaniasis that arginase-induced L-arginine metabolism suppresses antigen-specific T cell responses at the site of pathology, but not in the periphery. To test whether these results translate to human disease, we recruited patients presenting with localized lesions of cutaneous leishmaniasis and assessed the levels of arginase activity in cells isolated from peripheral blood and from skin biopsies. Arginase activity was similar in peripheral blood mononuclear cells (PBMCs) from patients and healthy controls. In sharp contrast, arginase activity was significantly increased in lesion biopsies of patients with localized cutaneous leishmaniasis as compared with controls. Furthermore, we found that the expression levels of CD3ζ, CD4 and CD8 molecules were considerably lower at the site of pathology as compared to those observed in paired PBMCs. CONCLUSION: Our results suggest that increased arginase in lesions of patients with cutaneous leishmaniasis might play a role in the pathogenesis of the disease by impairing T cell effector functions.


Assuntos
Arginase/metabolismo , Leishmaniose Cutânea/patologia , Pele/enzimologia , Pele/patologia , Adolescente , Adulto , Biópsia , Complexo CD3/análise , Antígenos CD4/análise , Antígenos CD8/análise , Criança , Etiópia , Feminino , Humanos , Leucócitos Mononucleares/química , Leucócitos Mononucleares/enzimologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Hum Immunol ; 73(5): 465-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406255

RESUMO

The antigen-presenting cell­expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)­12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.


Assuntos
Antígenos CD40/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Macrófagos/imunologia , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Antígenos CD40/imunologia , Células Cultivadas , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Biblioteca de Peptídeos , Ligação Proteica , Ressonância de Plasmônio de Superfície
19.
J Biomed Biotechnol ; 2010: 719361, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19884987

RESUMO

Neutrophils are rapidly and massively recruited to the site of Leishmania inoculation, where they phagocytose the parasites, some of which are able to survive within these first host cells. Neutrophils can thus provide a transient safe shelter for the parasites, prior to their entry into macrophages where they will replicate. In addition, neutrophils release and synthesize rapidly several factors including cytokines and chemokines. The mechanism involved in their rapid recruitment to the site of parasite inoculation, as well as the putative consequences of their massive presence on the microenvironment of the focus of infection will be discussed in the context of the development of the Leishmania-specific immune response.


Assuntos
Leishmania/metabolismo , Leishmaniose/sangue , Leishmaniose/fisiopatologia , Neutrófilos/parasitologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Sistema Imunitário , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Psychodidae , Especificidade da Espécie
20.
J Immunol ; 183(11): 7212-22, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915064

RESUMO

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.


Assuntos
Anticorpos Monoclonais/imunologia , Ativação Linfocitária/imunologia , Receptor Notch1/biossíntese , Receptor Notch2/biossíntese , Animais , Especificidade de Anticorpos , Diferenciação Celular , Membrana Celular/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptor Notch1/imunologia , Receptor Notch2/imunologia , Transdução de Sinais/imunologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA